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of classical geometric and topological notions in string theory. The primary focus is on
situations in which D-brane or string probes of a given classical space-time see the geometry
quite differently than one might naively expect. In particular, situations in which extra
dimensions, non-commutative geometries as well as other non-local structures emerge are
explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-

times with non-trivial causal structures within string theory is initiated.
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Chapter 1

Introduction

1.1 Geometry and Perturbative Quantum Gravity

Geometric concepts play a central role in the construction of models for physical phe-
nomena. It is remarkable that the geometric model of space-time as a smooth manifold
endowed with a Lorentzian metric (see, for example, [1, 2, 3]) is applicable to the description
of physics ranging from the subatomic to the astronomical. Indeed, it is difficult to imagine
a description of physics which does not involve the data of relative temporal and spatial

distances and angles between objects.’

The highly successful local, Lorentz invariant and
renormalizable quantum field theories (QFT’s) used to construct the Standard Model of par-
ticle physics certainly require such classical data as inputs. As Einstein taught us, gravity is
associated with the dynamics of the space-time metric itself. Quantizing gravity then seems
to require reconciling the dependence of the quantization procedure on the classical expecta-
tion value of the metric with the requirement that the metric be treated as a fully quantum

field. This situation is analogous to that encountered for a Higgs field, and suggests quan-

tizing small perturbations about a given background configuration.? Unfortunately, unlike

'Yet, such theories do exist and are of significant mathematical interest - topological quantum field
theories and string theories. However, being devoid of dynamics, they seem to be of little physical interest.
2See [8] for details regarding an attempt to quantize gravity in a manifestly background independent way.
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the case of the Higgs theory, the usual methods of perturbative QF T applied to fluctuations
of the metric lead to a non-renormalizable theory. In particular, just as was the case for the
Fermi theory of the weak interactions, the strength of gravity is controlled by a coupling
G n with inverse squared mass dimension leading to uncontrollable divergences in loop cor-
rections coming from high energies or small distances. More intuitively these diveregences
arise due to the fact that probing short distances, Az = £, = 1.6 x 10~33cm requires, by the
usual arguments of quantum mechanics, very high energy probes E =~ 1/£, = 1.22x101°GeV
which lead to large local backreaction with induced radius of curvature, R = £,.

In the case of the Fermi theory, these divergences were of course later understood to be
the signal of new physics at energy scales near where the effective dimensionless coupling
GrE? ~ 1. At these energy scales, the interaction vertices between four fermions in the
Fermi theory are actually understood to be split into a pair of trivalent vertices connected
through the exhange of virtual W* and Z° gauge bosons whose couplings and masses
determine Gr. So the interaction vertices of the Fermi theory get smeared out by the
propagation of virtual gauge bosons, thereby helping to soften the small distance divergences
in the Fermi theory. In fact, using in a crucial way the hidden gauge symmetry, it was
shown that the above procedure results in a local, renormalizable description of the weak
interactions.

In the seventies and eighties, it was recognized that perturbative superstring theory
potentially provided a framework for an analogous explanation for the divergences of per-
turbative quantum gravity (see [4, 5] for a review). The excitement about string theory
in recent years can be attributed to the realization that superstring theories are actually
non-perturbatively consistent quantum theories containing both Einstein’s gravity and su-

persymmetric QFTs (see [6, 7] for a review of these newer developments).

1.2 String Theory as Quantum Gravity and Geometry

Just as in the case of the weak interactions, string theory introduces new degrees of

freedom which would appear when Gy E? ~ 1 whose propagation and gauge symmetries
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smear out gravitational vertices and in fact render gravitational amplitudes finite, order
by order in a perturbative expansion scheme.? However, string theory achieves this by
smearing out both the interaction vertices as well as the fundamental degrees of freedom
themselves. Further, the consistency of the expansion scheme actually requires that all the
perturbative degrees of freedom (not just gravitational) of the theory be associated with
open or closed strings. In particular, the graviton is interpreted as one of the lowest excited
states of a closed superstring, while gauge bosons and other matter arise as other states of
closed or open strings. That is, string theory is no longer manifestly local, and in fact does

4 The absence of such local probes calls into

not contain truly local perturbative probes.
question the interpretation of the classical background metric associated with the theory
at distance scales smaller than the characteristic length of the string, v/o/. Note that this
issue exists even in the “classical limit” of the string theory, by which we mean the limit in
which the expansion parameter g is set to zero, but where the non-locality remains.

In order to approach this issue, it is useful to briefly recall the way in which the classical,
background geometric data enters into string theory in this “classical limit” A classical
vacuum state of a closed superstring theory is specified by the choice of a superconformal
2D theory.® Generically, these CFTs can be understood as conformally invariant non-linear
sigma models describing the embedding of the string world-sheet into a geometric target
space-time. The couplings of the non-linear sigma model are interpreted as specifying the
background metric, string coupling, as well as certain higher form field strength fluxes
in the target space-time. The superconformal symmetry places significant constraints on
these couplings, which at lowest order in a systematic expansion in o' require that the

classical background fields obey generalizations of Einsten’s equations. In this way, a choice

3Note, however, that the string perturbation expansion does not converge! In fact, it is not even Borel
summable,[9] suggesting the presence of non-perturbative (non-analytic in the expansion parameter) cor-
rections of great importance. In fact, such corrections have been understood as effects associated with
D-branes[12, 13], and even computed using certain dualities.

4This is true only perturbatively - DO-brane probes in ITA provide a non-perturbative counterexample of
great importance.

SWe are ignoring here an important subtlety - such a formulation is not fully understood in the presence
of RR fluxes (see [10] for the state of the art regarding this issue).
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of vacuum in string theory corresponds to a particular Lorentzian space-time manifold
with certain additional fluxes and solitonic defects in which the string is interpreted as
propagating. However, this correspondence is quite subtle. First, the space-time manifold
may be singular without spoiling the consistency of the theory, which suggests that in some
sense string theory resolves the singularity of the classical geometry.® Further, the mapping
of vacuum data to geometry is not unique, as the CFTs associated with different manifolds
can be isomorphic. Strings propagating in certain compact space-time manifolds with a
certain characteristic size R can be re-interpreted in terms of a string theory on an often
topologically distinct manifold of size g. This duality involves the exchange of string
winding and momentum modes around various circles [15] and so makes explicit use of the
non-locality of the theory. Thus, we see that string theory in a given vacuum configuration
may admit more than one semiclassical, geometric interpretation, suggesting that stringy
probes experience the classical geometry in a more sophisticated way than is the case in
QFT.

Things get much more interesting when we go beyond the consideration of perturbative
string probes present in the classical (g; = 0) limit of string theory. One of the major events
that led to the recent renaissance in string theory was the realization of the importance of
additional probes in quantum string theory, D-branes. D-branes in type I and II string
theories are extended objects which are charged under the antisymmetric tensor fields com-
ing from the RR sector of the superstring. At small g, their fluctuations are described by
open strings restricted to end upon them [12, 13, 14]. At low energies, the lightest modes
of these open strings are just gauge bosons and their superpartners, giving rise to an ef-
fective description of the physics of N coincident D-branes in terms of an SU(N) super
Yang-Mills (SYM) theory localized on their world-volume. Further, we note that an alter-
nate description of these Dp-branes, as extremal p-brane solitons of the effective low energy

supergravity theory, becomes valid when g,V is large. Note also that the tensions of these

SInterestingly, one can trace the origin of this resolution to the fact that certain NSNS B fluxes are
present in the geometry [11]. This suggests that such fluxes ought to be more intrinsically included in any
effective geometry experienced by a string probe. In fact, as we will discuss in Chapter 3, this issue plays
an important role in understanding how noncommutative geometry enters into string theory.
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D-branes scale as g%, suggesting that D-branes wrapped on compact cycles can become light
at strong string coupling. Thus, there are many interesting circumstances in string theory
where the open strings ending on these branes are the most interesting degrees of freedom,
or even where the D-branes themselves become very light and dominate the physics. In
these circumstances, it is the effective geometry associated with semiclassical physics of

these probes that becomes the most physically relevant.

1.3 Overview

The work described in this dissertation primarily focuses on analyzing circumstances in
string theory where the effective geometry associated with string or D-brane probes differs
significantly from the background metric associated with the couplings of the worldsheet
non-linear sigma model. In each case, interesting physical and mathematical consequences
of these differences are explored. It is hoped that these inquiries will help in approaching
some of the difficult issues as yet unresolved in relating string theory to natural phenomena
such as vacuum selection, the cosmological constant problem and supersymmetry breaking.

In Chapter 2 we begin with an example in which the duality between a string theory and
11D supergravity (M-theory) can be used to gain a geometric understanding of a variety
of non-perturbative phenomena in supersymmetric gauge theories [44]. As we mentioned
earlier, the low energy effective description of the open string theory associated with NV
coincident D-branes is SU(N) SYM theory. In fact, one can realize supersymmetric ana-
logues of 4D QCD within string theory using brane constructions [21, 22]. Using the novel
geometry associated with the physics of DO- and D2-brane probes of this brane construction
and their lift to M-theory, we are able to gain a better understanding of the mechanism of
flavor symmetry breaking by flavored monopole condensation suggested in the work of [43]
in these theories. Further, by a novel re-interpretation of the relation between the lifts of
ITA brane configurations to M-Theory, we were also able to give a simple interpretation of
Seiberg Duality [17] in this framework.

The gauge symmetry on the world-volume of D-branes has a further important conse-



1.3. OVERVIEW 6

quence in that the fields which describe the fluctuations of the D-brane are actually adjoint
valued, N x N matrices. In this sense, the “coordinates” of these coincident D-branes have
become noncommuting matrices. This hints at a role for noncommutative geometry in the
description of the fluctuations of D-branes [20]. As we will review in Chapter 3, the easiest
way to understand the emergence of noncommutative geometry is to add a constant NSNS
antisymmetric tensor flux By, along the world-volume of the branes (the connection to
matrices will be made clear later). The effective physics can be described in terms of an
ordinary gauge theory in the presence of constant magnetic flux. However, in a certain
limit involving large B the physics of fluctuations of the D-brane are best described by a
non-local theory with a deformed noncommutative gauge invariance defined on a noncom-

mutative deformation of space-time [58, 59,

EPE AR (1.1)

where 6 ~ 4. Seiberg and Witten [59] argued that there must be a mapping between

these descriptions, and proposed a form of this map for the U(N) case to first order in
0. In Chapter 3 we discuss this correspondence in greater detail and discuss the formal
properties of this map [74]. We find a cohomological formulation of the Seiberg-Witten
map using BRST methods. Using this interpretation, we present an effective method for
computing the map order by order in 8 for the general, non-abelian case.

In Chapter 4, we study a simpler non-local deformation of SYM known as a dipole
deformation [77] which result if one places branes in a strong NSNS field-strength. The
fields of such a theory couple non-locally to the world-volume gauge theory with opposite
charges at some space-time separation, i.e. as dipoles. In particular, we found that D-branes
in the Penrose limit of AdS3 x S x T* can be described by a light-like dipole theory [16].

Perhaps the most radical proposal for how at tiny distance scales to our notions of space-
time is the idea of Holography as expounded by 't Hooft and Susskind. Roughly, this is the
notion that the true degrees of freedom of a gravitational theory in d + 1 dimensions are
radically fewer than one might naively expect. This idea motivated by studies of black hole

thermodynamics in classical general relativity which suggest that the area of the horizon of a
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black hole acts in every way like, and must be treated as, an entropy. Now, as gravitational
collapse can only lead to increasing entropy density, a black hole represents a state of
maximal entropy density. Quantum mechanically, we expect that entropy counts the number
of accessible quantum states of a system. Thus, we are led to expect that the degrees of
freedom in a quantum mechanical, gravitational system ought to scale with area rather than
with volume. Buosso (building on earlier work by Fischler and Susskind) formulated this
conjecture more precisely for arbitrary space times as the covariant entropy bound, which
states that the entropy flux through any given light-sheet in space-time is bounded by one
quarter its area in Planck units. Further, he established a precise critereon for finding
certain hypersurfaces in spacetime which bound light sheets of maximal possible entropy
called preferred holographic screens.

This suggests that perhaps the physics of a gravitational system in d 4+ 1 dimensions
may be described by a non-gravitational theory in one lower dimension which may, in some
sense, “live on the holographic screen”. In fact, a conjectural example of such a relationship,
the AdS-CFT correspondence, has been explored in great detail in string theory. The most
familiar version of this correspondence arises by considering N D3-branes in IIB, whose low
energy worldvolume theory is just the d = 4, N' = 4 SU(N) superconformal Yang-Mills
theory. Maldacena conjectured that string theory on the near horizon AdSs x S° geometry
of the supergravity description of these D-branes should be dual to this superconformal
theory, which can be understood as “living on the boundary” of AdSs.

In Chapter 5, we apply Buosso’s procedure to obtain preferred holographic screens
and entropy bounds in certain supersymmetric analogues [138] of a rotating universe of a
kind first constructed by Godel [137] in 1949. These spacetimes have causality problems
associated with the presence of closed time-like which, we suggest, may have an interesting
resolution in a holographic interpretation upon the preferred screens we computed. In
order to test this proposition, we would like to analyze these backgrounds in string theory.
It turns out [159, 160] that these backgrounds are T-dual to certain exactly solvable plane-

wave spacetimes (incidentally, S-dual to those considered in Chapter 4).



Chapter 2

D-Branes and SUSY Gauge

Theories

One of the main sources of the renaissance in string theory in the last decade of the
twentieth century was an exact result in field theory. Seiberg and Witten [18] proposed an
exact the low energy effective action for N' = 2 supersymmetric SU(2) Yang-Mills theory.
This proposed “solution” of the theory made extensive use of the concepts of electric-
magnetic duality as well as the holomorphicity properties of certain observables in the
theory that had their roots in the unbroken supersymmetry. The solution was encoded, for
reasons that were quite mysterious at the time, in terms of a complex curve, later known
as the Seiberg-Witten curve. The arguments used to make this proposal were subsequently
vastly generalized in string theory, where they were used to analyze the strong coupling
(gs — 00) behavior of various string theories (see e.g. [7] for details).

In this chapter, we will consider doing the opposite. Maximally supersymmetric gauge
theories are realized on the worldvolumes of D-branes. As we will review in section 2.1, one
can use various combinations of branes to reduce the supersymmetry of these gauge theories
as well as couple matter to them. Unhappily, the analysis of these configurations in ITA

involves non-perturbative, strong-coupling effects. However, using a now well established



duality between ITA string theory and M-theory (which will be reviwed briefly in section 2.1),
it was shown in [22] that supersymmetric QCD (SQCD, supersymmetric Yang-Mills coupled
to supersymmetric matter transforming in the fundamental representation of the gauge
group) is contained in the low energy description of certain configurations of M5-branes
in multi-centered Taub-NUT space [22]. It turns out that the classical properties of these
brane configurations in M theory are able to provide a concrete realization of otherwise
mysterious quantum phenomena, such as confinement via magnetic monopole condensation
[18, 23, 49] and Douglas-Shenker strings [47, 51]. This approach is known as MQCD, and
is reviewed extensively in [50]. Here, we introduce a novel MQCD description of Seiberg
duality in N' = 2 superQCD softly broken to N’ =1 by adding a mass term for the adjoint
chiral multiplets. We then proceed to construct the M-theory realization of the U(Ny) —
U(r) x U(Ny — r) flavor symmetry breaking mechanism in N’ =1 SU(N,) gauge theories
studied in Refs. [42, 43, 54].

In section 2.1, we briefly outline the relevant field and brane content of type IIA string
theory and proceed to review the semi-classical description of supersymmetric gauge theories
as effective field theories of parallel D4-branes suspended between NS5-branes in type ITA
string theory. To understand the quantum gauge theories we lift this description to M-
theory. We then review the field theory results of Refs. [42, 43, 54] in section 2.2. Then,
in section 2.3 we describe Seiberg duality as a choice of two D-brane configurations in ITA
which lift to the same Mb-brane configuration as seen by M2-brane probes at different
energy scales. We finally turn to the MQCD description of flavor symmetry breaking in
section 2.4 and present a detailed example of the Mb5-brane configurations corresponding
to r-vacua in SU(3) with 4 flavors is presented in section 2.4. Note that the results of this
chapter were obtained in collaboration with Jarah Evslin, Hitoshi Murayama, and John

Wang [44].
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2.1 Gauge Theories from String Theory

After reviewing the basic features of type ITA string theory and M-theory we will require,
we consider the embedding of 3+ 1 dimensional N' = 2 SU(N,) SQCD with N flavors (i.e.
Ny hypermultiplets transforming in the fundamental representation of SU(N,)) in ITA string
theory and its M-theory lift [21, 22].

2.1.1 Type ITA fields and branes

Let us recall the field and brane content of type ITA string theory at low energies (all
the facts we state below are fairly standard and reviewed in, e.g. [7]). At low energies,
the type ITA string reduces to type ITA supergravity in ten dimensions. This theory has
two 16 component Majorana-Weyl supersymmetries of opposite ten dimensional chirality,
for a total of 32 real supercharges. Both type ITA and IIB string theory share the same
field content coming from the NS sector of the superstring - massless modes associated with
fluctuations of the space-time metric g,,, an antisymmetric two-tensor gauge field By, (the
NS B-field), and the dilaton ®. The background value of the dilaton sets the string coupling
constant,

gs = 2%, (2.1)

Fundamental strings are electrically charged under the NS B-field. There exist half-BPS
(configurations preserving half of the supercharges) solitonic 5-branes called NS5-branes
which are magnetically charged under the NS B-field. The background field configuration
associated with a stack of k¥ NS5-branes is given by [26],

2(®—@ _ k ! _ 2(%-@
eHe=®) = 143 ‘;_U,_O‘g_v,i‘z Gy = e2®=%)5,, (2.2)
Hrrk = —erykr0"® Guw = Nw,
where I,..., L = 6,...,9 label directions transverse to the fivebranes, Z; are the positions
of the branes in those directions, and y = 0,...,5 label directions along the brane. The

stability of this configuration arises of coincident NS5-branes arises from the cancellation of

their mutual magnetic repulsion and gravitational attraction and is associated with the fact
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that they are half-BPS. Note the divergence of the dilaton near the cores of the NS5-branes
which would suggest that perturbative string theory breaks down there. The world-volume
theory on the NS5-branes is a poorly understood supersymmetric theory of antisymmetric
two-tensor “gauge” fields with self-dual field strength.

The ITA and IIB string theories differ in the fields that arise from the RR sector of the
superstring, as well as the corresponding D-branes charged under them. In type ITA, we find
even dimensional anti-symmetric tensor gauge fields C', C3. The D0-brane is electrically
charged under C', while the D6-brane is magnetically charged under C;. Similarly, the
D2-brane and D4-brane carry respectively electric and magnetic charge under C3. These
D-branes are also half-BPS, and carry maximally supersymmetric gauge theories on their
worldvolumes.

An extremely important feature of these D-branes that we will use extensively in the
following is the fact that D-branes can end on, dissolve in, and intersect other D-branes
and NS5-branes in various ways that preserve large fractions of supersymmetry. The fact
that branes can end and dissolve is surprising at first glance as all these objects carry gauge
charges which ostensibly need to be conserved. The charges of the dissolved or ending
branes can be carried by the gauge fields on the branes they end on or dissolve in. The
particular cases of interest for this work are the following, all of which are at least %BPS

configurations,

e Fundamental strings, of course, can end on any D-brane and describe the low-energy
fluctuations of the D-brane at small g;. The ends of strings are electric charges for

the world-volume gauge fields on any D-brane.

e DO0-branes can dissolve into gauge theory instantons on the worldvolume of D4-branes,

as can D2-branes into D6-branes.

e D2-branes can end on D4-branes and NS5-branes. The end of the D2-brane is a

magnetic monopole of the gauge theory on the D4-brane.

e D4-branes can end on NS5-branes. The end of the D4-brane is described as a vortex
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in the NS5-brane worldvolume theory.

e D4-branes can also end on D6-branes and are magnetic monopoles on the worldvolume
of the D6-branes.

2.1.2 IIA and M-Theory

We will now review the relevant facts regarding the duality of type IIA string theory
and M-theory compactified on S'. The bosonic fields of maximally supersymmetric 11D
supergravity are an antisymmetric 3-tensor field C' and a metric g. The 11D supergravity
theory admits half-BPS solutions, M2-branes, which are electrically charged under the C-
field, as well as smooth magnetically charged solitons, M5-branes.

When M-theory is compactified on a circle of radius R, we can immediately see that the
field content of the theory matches that of type IIA supergravity. The Kaluza-Klein gauge
fields arising from the components of the metric and C-field along the circle yield the RR
gauge field C' and NS B-field and respectively. The components of the C-field and metric
transverse to the circle respectively yield the ITA RR C3-field and the ITA 10D metric. The
ITA dilaton is associated with the component of the metric which corresponds to the size
of the circle. This gets to the heart of the duality - as the vacuum expectation value of
the dilaton determines the string coupling, we expect that the size of the circle in M-theory
encodes g;. In particular, classical supergravity is a valid description of the physics when
the circle is large, which corresponds to the strong coupling limit of the string theory. The

/3

precise relation (see [6]) is that R(gs) o< go/". This is the fundamental fact which we will
exploit to understand non-perturbative behaviour in gauge theories living on D-branes in
ITA via M-theory.

Now let try to understand how the BPS spectrum of branes and strings in ITA arise
from corresponding objects in M-theory.! We begin with strings and D2-branes. As the

fundamental string is electrically charged under the NS B-field, which arises from the KK-

!The fact that these states are BPS is crucial to give meaning to these correspondences. The BPS
condition ensures that these states, defined in ITA at small string coupling, are stable to quantum corrections
and can be reliably followed from small string coupling to large string coupling to states in M-theory.
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reduction of the C-field, it is clear that it must be related to an M2-brane which wraps the
St. Similarly, the D2-brane arises from an M2-brane whose worldvolume is transverse to the
S!. The important point here is that the D2-brane and the string have a common origin in
M-theory. An analogous relation holds between the electric-magnetic duals of these objects
in ITA, the NS5-brane and D4-brane, and the M5-brane in M-theory. D4-branes arise from
wrapped M5-branes while NS5-branes correspond to unwrapped M5-branes. This common
origin will be essential for what follows.

The DO-brane is electrically charged under C' and as charge under KK-reduction is
associated with momentum in the compact direction, D0-brane charge is understood to
correspond to momentum along the S'. The fact that DO-branes become light at strong
string coupling is interpreted in M-theory via the need to include the full tower of KK-
excitations in the theory.? That is, the apparently uncontrollable non-perturbative physics
of light DO-branes in ITA string theory at large coupling is mapped to the highly tractable,
classical problem of including the effects of propagation in an extra dimension. So the
physics of light DO-brane probes led us to a novel geometric re-interpretation of the physics
of ITA string theory in terms of an 11D theory. This is perhaps the most important fact
for gaining intuition about how M-theory simplifies and controls the strong coupling limit
of ITA. The importance of D0O-branes in this correspondence is a recurring theme - in fact,
according to the Matrix theory conjecture of Banks and collaborators [115], there is a limit
in which the physics of these D0-branes describes M-theory completely.

Now, the D6-brane is the electric-magnetic dual of the D0-brane, and must correspond
to a magnetic monopole associated with the KK-gauge field. Such monopole charges must
correspond to space-times where the associated KK-gauge fields have monopole-like defects.
The most basic such space-times are known as “Kaluza-Klein monopoles” or mulit-Taub-
NUT spaces. These spaces are asymptotically flat and appear at infinity to be non-trivial

S! bundles over R?, the twisting of the bundle giving the Kaluza-Klein magnetic charge.

*Note that a highly non-trivial check of this conjecture is the requirement that precisely one D0-brane
bound state occurs for each value of D0-brane charge and have precisely the integral masses so as to fill
out a KK-tower at strong coupling! This non-trivial check has actually been carried out in many string
backgrounds [20, 27].
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To be more explicit, the D6-branes are associated with 11D metrics which are flat along
their RS! world-volumes (which we take, for consistency with what follows, to be in the
20,...,2% and z7,... 2% directions), and have the following multi-Taub-NUT form in the

remaining directions,

Vo, Vldglo G .
d82:Zdr2+T(T+w-dr), V:1+Z|I_"—I_"Z|’ wa:VV, (23)
i=1
where 10 is the direction upon which we are compactifying and ¥ = R(z*, 2%, 2%). Note

that as long as multiple sixbranes do not become coincident, this metric is smooth and
complete. Further, as the relative distances in the above metric scale with R, we find that
D6-branes have a smooth description in M-theory as long as R is large, i.e. in the region

where the supergravity description is valid.

2.1.3 Brane construction of ' =2 SQCD in ITA

Consider type ITA string theory on R%! with coordinates z°, ...,z and complex coor-
dinates
v=2z"+iz® w=21%+iz° (2.4)

0 1, 22, 23, and 28. The

A stack of N, parallel D4 “color” branes extend along directions z
low energy theory on these branes is SU(N,) 441 dimensional super Yang-Mills with 16
supercharges. In order to get a theory with 8 supercharges and of the right dimension, we
will take these D4-branes to stretch between the cores of pair of NS5-brane solitons extended
along the z°, ..., z% directions and placed at positions 0 and Lg along the % direction. The

effective gauge coupling, g, of the 341 dimensional theory is given by

1 Lg

— = 2.5

9> gsls (25)
where g5, ls, and Lg are the string coupling constant, the string length and the distance
between the two NS5-branes. To decouple the degrees of freedom of the bulk from the color

branes we take the limits

Lg
gs — 0, T — 0, g = constant. (2.6)
S
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As we will explain in greater detail in the next section, this double scaling limit is highly

non-trivial, as string theory near the NS5-branes is far from flat space perturbative ITA.

NS5 NS 5
D4 (color brane) ,D6
F-string ’
(W boson) F-string ’ ’
(quark) , .
D6
o D6
D2
(monopole)
4,5
7,8,9
4
6

Figure 2.1: Type IIA string theory realization of N’ = 2 SU(4) SQCD with 3 flavors. The
effective worldvolume of the gauge theory (which lives on the D4 color branes) is spanned
by the 20, !, 22, and 23 directions.

The light perturbative degrees of freedom of the gauge theory are strings which stretch
between the color branes, yielding an N’ = 2 vector multiplet transforming in the adjoint
representation of SU(N,). The distances between color branes correspond to the vacuum
expectation values of the adjoint scalars in the vector multiplet and so parameterize the
Coulomb branch. Quark hypermultiplets transforming in the fundamental representation of
SU(N,) may be included by attaching Ny D4 “flavor” branes stretching between one of the
NS5-branes and a D6 flavor brane. To preserve N = 2 supersymmetry no two D4-branes
may connect the same NS5 and D6-brane. This is known as the s-rule [21] and is U-dual

[28, 29] to Pauli’s exclusion principle. The quarks and squarks are strings which stretch
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from one D4 flavor brane to one D4 color brane and so they transform in the fundamental
representations of both the SU(N.) gauge group and the global flavor symmetry group.
Semiclassical magnetic monopole and dyon [22, 39, 40] states are realized by D2-branes
with the topology of a disk bounded by a D4-NS5-D4-NS5 cycle. The brane configuration

is summarized in Table 2.1.

Brane .’L'O .Tl .'L'2 .’E3 $4 .’L'5 ZE6 .’L‘7 .'138 .’Eg
Di | X |X|X]|X X

NS5 | X |X|[X|[X| X | X

NS5y | X | X | X | X |(X)]|(X) (X) | (X)
D6 | X | X |X|X X | X | X
D2 | X X) | (X)| X

DO | (X) (X)

Table 2.1: Alignments of branes in ITA. Parentheses indicate that the brane may be aligned
at an angle between the given directions. For the DO-branes they are used to indicate the
presence of both D-instantons and dynamical D0 particles.

There is an unbroken global U(Ny) symmetry when the flavor branes are placed at the

same v coordinate, although this symmetry is broken to U(1)"Vf when they are placed at

distinct positions v = m;, i = 1,..., Ny. The m; are the bare quark masses. Generally, a
quark with flavor ¢ and color a = 1,..., N, has mass
mi = |m; — ¢ (2.7)

which is the shortest distance between color brane a and flavor brane i. Alternately the

quark mass can be read from the superpotential terms:
W [ #0{02aQ + miGQ) (28)

where Q;,Q; are the N' = 1 chiral multiplets of the quark hypermultiplet and ® is the
N =1 chiral multiplet of the N' = 2 vector multiplet.
When two flavor branes ¢ and j and a color brane a are at the same v coordinate,

a

= m; = m;, then it is possible to enter the Higgs branch of the gauge theory. This is
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a) b)
NS5 NS5 NS5 NS5
k . ) k
b ,
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/ 7
" s Squark vevs parameterize
/ the positions of the flavor
Adjoint scalar vevs ¢ brane fragments.

parameterize the positions
of the color branes.

Figure 2.2: Type ITA brane configurations corresponding to the a) Coulomb branch b) a
mixed Coulomb and Higgs branch.

done by connecting color brane a to flavor brane ¢ and then breaking flavor brane j on D6-
brane . At this point we are allowed to move the portion of D4-brane j which is between
D6-branes ¢ and j, corresponding to generating vacuum expectation values for the squarks
in the hypermultiplet. These vacuum expectation values are parameterized by the position
of the D4-brane in the 27, 28, and z° directions as well as the Wilson line of the gauge field
Ag.

The U(1)g x SU(2)g R-symmetry of the classical N' = 2 theory is manifested as a
rotational symmetry of the brane cartoon. The U(1)z symmetry corresponds to rotations

7

of the v-plane, while the SU(2) is the universal cover of the SO(3) acting on z7, z8, and

z° by rotations.
2.1.4 Little strings, renormalization, and IR-free theories

Since the limit we take to obtain the gauge theory is one in which Lg < [, all the the

above strings and branes are necessarily very near the cores of the two NS5-branes. The
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closed string background fields associated with the NS5-brane solutions deviate significantly
from their asymptotic flat space values in that region. For instance, the string coupling
diverges near the cores of the NS5 branes. Thus, these objects are not well described by
branes and perturbative strings in flat space and are better understood as bound to the
NS5-branes. That is, they should be described as boundary states and their corresponding
open string sectors in the CFT which describes the background associated with the NS5-
branes. In particular, the masses of string states and the tensions of branes will differ from
the values that one might naively guess from the cartoons drawn above.

In the double scaling limit we are taking, (Lg, g5 — 0 with Lg/gsls held constant [30,
31]), the theory living on the NS5-brane decouples from the bulk and is a non-gravitational
six dimensional string theory known as Little String Theory (LST) [32]. In [33] a proposal
was made to study LST holographically by considering string theory in near horizon limit of
the curved geometry near the two NS5-branes. Fortunately, this string theory is described
by an exactly solvable CFT, and an analysis of branes and strings in this holographic
description has actually been carried out in detail in [34]. Their analysis confirms the
validity of many of the heuristic arguments we will make regarding these strings and branes
in TTA.

The renormalization group flow of the coupling constant can be understood using such a
simple argument. The ends of D4-branes act as charges (in fact, vortices as we will see later
in M-theory) in the world-volume theory of the NS5-brane. At low energies, this theory
is a mysterious six dimensional (2,0) tensor multiplet theory. Its bosonic fields are a two
form gauge field along with five scalars, four of which parameterize transverse fluctuations
of the brane while a fifth living on a circle foreshadows its lift to M-theory. Reducing the
theory to the transverse space to the vortex, it becomes a supersymmetric 241 dimensional
gauge theory with D4-branes acting as electric charges. The high degree of supersymmetry
ensures that there is no net force between D4-branes. However, the charges will actually
bend the NS5-brane by inducing the field profile 2% ~ log |v| (related by supersymmetry to

the profile of the gauge field around a charge in 2+1 dimensions). In particular, this implies
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that the gauge coupling of the theory runs [22],

1 Le(v)
g(v)? Gsls

~ log|v| . (2.9)

It is worthwhile reviewing what we mean by a running coupling in this context in a little
greater detail. At a generic point on the Coulomb branch of the theory with generic quark

masses, the only massless fields are the U(1)Ve—1

vector multiplets in the Cartan subalgebra
of SU(N.). Since we have no charged massless fields, we expect that below the scale
associated with the lightest massive particle the gauge couplings of the U(1)’s do not run
and can be considered fixed functions of that scale. Now, as the masses of particles in the
ITA construction are related to distances between branes in v, the coupling is a function of
these distances. This is what we mean when we interpret Eqn. 2.9 as a running coupling.

However, our primary interest is precisely in non-generic singular points (see section 2.2)
in the moduli space of these theories where there are extra massless states. In these cases,
the characteristic scale v vanishes, reflecting a singularity of the corresponding effective
action arising from integrating out these extra massless states. Often, these states will be
mutually non-local, corresponding to electrically and magnetically charged particles for the
same U(1), and therefore result in superconformal theories [35, 36]. If the superconformal
theory is trivial (as is the case for most of the situations we will consider), the resolution
to these difficulties is just to modify the effective action near these singular loci to include
the extra massless degrees of freedom. Of course, if the theory includes massless monopoles
which are described by non-perturbative states (massless D2-branes) in ITA, we will need
better knowledge of non-perturbative stringy effects to analyze these configurations. We
will later use M-theory for this purpose.

As we will discuss in section 2.3, in the case a trivial superconformal theory (an IR
free gauge theory), there is an interesting ITA description that is motivated by M-theory
considerations. At low energies, these theories are weakly coupled, so we can consider a
ITA brane configuration such that % > land gs € 1. If F € 1/Lg < 5, then bulk
gravity decouples and we find an IR free gauge theory. However, at energies greater than

1/Lg, we expect that the theory will significantly deviate from a 4D gauge theory due to
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the presence of A® KK modes. Thus, we can interpret this theory as a KK reduced 5D
gauge theory weakly coupled to 4D matter (the quarks are still localized near the core of
an NS5-brane). The weakness of the coupling is precisely due to the small overlap of the
5D gauge boson wavefunctions with the 4D quarks localized at the branes. Note that the
gauge bosons are well described by perturbative ITA strings in flat space since Lg > [;.
Further, note that the Coulomb branch of the field theory is insensitive to the z position
of the D6-branes to which the D4 flavor branes are attached (see Fig. 2.1). So, we are
free to move the D6-branes along the z° direction through one of the NS5 branes (thereby
undergoing Hanany-Witten transitions [21] that eliminate the flavor D4-branes) such that
all the D6-branes are between the two NS5-branes and far from their cores. The quarks in

this picture are perturbatively described by D4-D6 strings in flat space.

2.1.5 Quantum effects from branes in ITA

The most important feature of the ITA construction of gauge theories is that branes
provide physically intuitive realizations of quantum effects due to monopoles and instantons
in these gauge theories.

Semiclassical magnetic monopole and dyon [22, 39, 40] states are realized by D2-branes
with the topology of a disk bounded by a D4-NS5-D4-NS5 cycle. The mass of the monopole
is proportional to the area of the D2-brane, m % ~ ¢/g? in agreement with semiclassical
field theory computations.

Including DO-brane instantons stretched between the two NS5-branes and coincident
with the color branes [23, 21, 37] allows us to compute instanton effects in the gauge theory.
To see why, note that since the RR 1-form Agrp couples to the D4-brane worldvolume fields
via

LD ArrNF AF, (2.10)
the worldline of an instanton configuration of the gauge fields (which is extended in z%)

will inherit an electric coupling to Aggr proportional to its instanton charge, precisely the

defining feature of a D0-brane. Further, it is also clear from this coupling that the theta
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angles of the gauge theory are associated with the Wilson line of Arg along z°[38].

Since the D-instantons are BPS, they locally break half the A = 2 supersymmetry. The
broken supersymmetries can no longer ensure force cancellation between the charged ends
of the D4-branes coincident with them. Thus, two color D4-branes approaching each other
along the Coulomb branch of pure SU(N,.) SYM will find that DO instanton corrections
give rise to repulsive forces between them that prevent them from coinciding. Note that
this effect becomes important only when the branes approach eachother, as the U(1) gauge
theory associated with a single D4-brane cannot accomodate instantons! Therefore the full
gauge symmetry of the theory is never restored on the Coulomb branch. In addition, the
presence of the DO-brane instanton affects the D2-brane monopole in the region between
the approaching color branes giving rise to non-perturbative corrections to its mass of order
A. These facts [37] provide physical intuition for the phenomena encountered in the exact
solution of [18].

These considerations are modified if we add quarks, as color branes attached to flavor
branes (from the perspective of the NS5-branes, this looks like opposite charges annihi-
lating) no longer support finite action instantons on their worldvolumes. Thus, there is
no obstruction to such connected branes becoming coincident, and one expects loci in the
moduli space with enhanced gauge symmetry. As we will review in section 2.2, such loci

are indeed present and are the focus of our work.

2.1.6 Quantum gauge theory and M-Theory

By lifting the above brane configuration to M-theory [22], we can compute exactly
some of the non-perturbative (in gs) quantum corrections discussed above, and thereby
gain considerable insight into the origin of quantum phenomena in SQCD. The D0-brane
related corrections we have argued for above will have a much more natural interpretation
in terms of the physics of the extra dimension. In particular, we consider the above ITA
brane configuration in the limit of large g; and Lg with g% = L—é" fixed, where the classical

description of M-theory is valid.
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In M-theory, the D4-brane is an M5-brane which wraps the M-theory circle (' ~
210 + 27) once while an NS5-brane is an M5 brane which does not wrap the z'° direction.
The collection of D4 and NS5-branes can therefore be described as a single M5-brane R3»! x %

5 25 and z'0

which fills the 2%, 2!, 22, 22 space and is a Riemann surface ¥ in the z*, =
directions.

In fact, if we introduce the new holomorphic coordinate,

_ —_956_- 10
t = exp 7 @ (2.11)

where R is the radius of the M-theory circle, we can construct ¥ as the vanishing locus of
a polynomial F'(v,t) [22]. As each NS5-brane corresponds to an asymptotic branch v — oo
of the surface regarded as a multivalued function #(v), we expect that F'(v,t) is a quadratic
polynomial in £. Flavor branes are seminfinite D4-branes at some v = m; and therefore
correspond to asymptotic regions in the surface where v — m; and ¢ — 0. Color branes
(generically) are handles connecting the two NS5-branes which also wrap the M-theory
circle. Regarding the surface as a multivalued function v(t) for small ¢, we expect it to have
N, roots, implying that F(v,t) should be a polynomial of degree N, in v. Ignoring the M-
theory circle, |t| is a double-valued function of v and we expect that the two branches should
meet at the semiclassical positions of the color branes v = ¢%. The above considerations fix
3 up to a constant A, which can be identified with the dynamically generated QCD scale
of the theory (see [22]),

Ne Ny
2+t [[(v— 9% + AN [[(v — ms) = 0. (2.12)
a=1 =1

Note that ¥ is precisely the Seiberg-Witten curve [18] of the gauge theory! For example, the
lift of the brane configuration shown in Fig. 2.3 is the single M5-brane pictured in Fig. 2.4.

The primary benefit of the lift to M-theory is that its classical geometry contains the
Seiberg Witten curve and therefore encodes all the instanton effects in the gauge theory.
For instance, the running of the gauge coupling at a generic point on the Coulomb branch is

lifted in M-theory to the running of the full complex coupling including the effective theta



2.1. GAUGE THEORIES FROM STRING THEORY 23

NS5 y/

D4 branes

D4 branes

5
4LZ

6

Figure 2.3: IIA realization of the Coulomb branch of N'=2 SU(3) SQCD with 3 flavors

Figure 2.4: The M-theory lift of the above IIA configuration to a single M5-brane. The
directions z*, °, and % are shown explicitly while the z'° coordinate is parameterized by
darkness.
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angle, '

T = %+% ~ logv (2.13)
Further, the thickening of the D4-branes in v is a manifestation of the instanton induced
repulsion between color brane ends as well as the corresponding corrections to the masses of
BPS states (which are associated with BPS open M2-branes ending on the M5-brane). We
can see that they generically meet over an interval of order A in v, reflecting the observation
that the adjoint vevs are not good coordinates everywhere in moduli space.

Also, the U(1) g anomaly is particularly easy to see in the M-theory picture. Recall that
D4-branes wrap the M-theory direction and end on the NS5-branes, which do not wrap the
M-theory direction. This means that the end of a D4-brane on an NS5-brane is a vortex
in the embedding coordinate of the NS5-brane in the M-theory direction (see Figs. 2.4 and
2.7), as we had mentioned earlier. In particular, at large v if one follows a circle along the
NS5-brane whose interior contains all of the D4-branes, this circle will wrap the M-theory
direction as many times as there are colors minus flavors attached to this NS5-brane. Thus
the naive U (1) g rotational R-symmetry of the brane must be combined with a simultaneous
rotation of the M-theory circle. Such a redefinition is not possible with both NS5-branes
as the z'0 redefinitions would have to be in opposite directions for the two branes and so
the U(1)g is anomolous. There is a residual Zoy,—n, symmetry in the U(1) redefined to
include a rotation of the M-theory circle in opposite directions on both NS5-branes. For
these special angles the two redefinitions only disagree by a multiple of 27 in the M-theory
direction. The reader may verify these claims visually by considering the asymptotic z'°
dependence of the regions corresponding to the NS5-branes (large positive and negative
values of 2%) on the M5-branes pictured in Figs. 2.4 and 2.7.

Another benefit of the M-theory lift is that all the matter in the gauge theory is realized
in M-theory by open M2-branes ending on the M5-brane. In reducing to IIA, the M2-
branes which wrap the M-theory circle carry fundamental string charge, while unwrapped

M2-branes are D2-branes. The M2-brane configurations corresponding to BPS states were

analyzed critically in [40, 39]. As predicted in [22], they found that BPS states were M2-
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branes with minimal areas in their homology class, as we will review in greater detail in
section 2.4.

For example, baryons are M2-branes [49] with k£ + 1 boundaries as seen in Figure 2.5.
One boundary wraps k color branes and the other £ boundaries wrap flavor branes. In the
ITA limit, the baryon is a collection of k quarks attached by a k-string [23, 51]. Mesons are
tubular M2 branes which start by wrapping one flavor brane, connect to a color brane, and

1

then extend in the space directions (z!, £, and z?) before wrapping another flavor brane.

a) b)

Figure 2.5: a) a baryon which wraps 2 color and 2 flavor branes in SU(2) SQCD with 2
flavors (b) a meson which wraps 2 flavor branes and wraps and unwraps one color brane

We certainly have gained a great deal in this lift, but we don’t quite get it for free.
Since this lift involves going to large string coupling, one cannot be sure that the low
energy effective theory on the Mb5-brane is the gauge theory we started with. In fact, it
is actually a six dimensional theory. To see this, note that the M theory limit is exactly
the opposite limit needed to obtain the 4D gauge theory. It requires taking the radius of
the M-theory circle R = g4ls as well as Lg large leaving g% = L—Ig fixed. However, since
unbroken supersymmetries protect certain holomorphic quantities (like the masses of BPS
states and superpotentials) from perturbative gs quantum corrections, one can still use
classical computations involving the M5-brane to determine them exactly. The breakdown
of the M-theory picture for the computation of non-holomorphic quantities (like the masses

of non-BPS states) can then be understood as due to the presence of KK modes (dynamical
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DO-branes and Ag fluctuations) which become light and strongly coupled in this limit [23].

For example, one can solve the N' = 2 gauge theories constructed above at generic points
in their moduli spaces as their effective actions are governed by holomorphic quantities
(N = 2 prepotentials F) which can be computed exactly using ¥ [22]. Upon breaking to
N = 1, the Kéahler potential is no longer protected from such corrections, and we can no
longer expect such dramatic results from M-Theory. However, as the superpotential of the
N = 1 theory is still protected, we will see that we can still learn what we need about

N =1 SQCD from M-theory.

2.1.7 Soft breaking to N =1 SQCD

In order to explore non-trivial physics associated with confinement, flavor-symmetry
breaking, and Seiberg Duality, we must, of course, break the supersymmetry down to N = 1.

We do this by rotating one of the NS5-branes,

v cosf sinf v
= ; (2.14)
w —sinf cos@ w

This results in a brane configuration which preserves only four supercharges [41] and softly
breaks N' = 2 supersymmetry to N/ = 1. We will refer to the rotated NS5 brane as the NS5y
brane. The NS5, /5 brane is commonly referred to as the NS5’ brane in the literature.

The symmetry breaking classical superpotential generated by this process can be un-
derstood as follows. After the rotation, color branes at generic positions in v no longer
minimize their lengths. In fact, to reach equilibrium, all color branes much either slide to
v ~ O(A) or attach to flavor branes. Since translations along v (which correspond to adjoint
scalar vevs) now cause the color branes to stretch, the N’ = 1 chiral multiplets containing

these adjoint scalars acquire a mass p via the superpotential term
W DOpuTrd? i ~ tané . (2.15)

If r color branes connect to flavor branes, classically the only surviving vacuum is

¢ =m; for i=1,...;r ¢*=0 for a=r+1,...N,. (2.16)
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Figure 2.6: a) r color branes and flavor brane connects. b) After rotating the five brane,
color branes which are not connected to flavor branes move to the origin of v. This is the
realization of the r vacua in [24].

However, when quantum corrections are considered the surviving vacua are those where
N,—r or N.—r —1 monopoles and dyons become massless and condense with vevs of order
O(pA). In the M theory picture, this occurs when the bounding cycles of the corresponding
M2-branes degenerate, as in Fig. 2.7.

More precisely, the vacua which survive the pTr®? perturbation are those in which the
cycles that have degenerated result in an Mb-brane configuration ¥ x R* such that X is
of genus zero, as argued in Refs. [18, 23, 53]. We will outline here the argument for pure
SU(N,.) gauge theory, though the argument in Ref. [53] extends to the general case.

A genus zero curve is birationally equivalent to CP!, which means that one can find
a rational parameterization of such a curve in terms of an auxiliary complex parameter A.
We construct the parameterization by considering the brane setup pictured in Fig. 2.7. The
portions of the M5-brane corresponding to the two NS5-branes are characterized by the fact
that they are the only asymptotic regions corresponding to v — oo and |log¢| — oo. Thus,
without loss of generality, we can take v = X\ +cA~! for some complex constant c¢. The two
NS5-branes are then just the regions A — oo and A — 0. Further, as the M5-brane must
wrap the M theory direction N, times in opposite directions as we make a loop around each
NS5-brane, we expect that ¢ ~ AV and that ¢V = 1. In order to rotate the NS5-brane

corresponding to A — 0, we pick w = pyA~! for some complex number x. With this choice,
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Figure 2.7: An M5-brane configuration corresponding to N' = 2 SU(3) SYM near a vacuum
which survives upon softly breaking to N' = 1. The two small holes are the degenerating
cycles. The M2-branes corresponding to nearly massless monopoles are disks bounded by
these cycles. The M-theory direction is parameterized by darkness.

we see that in the limit A — 0, v & pw, which implies that at high energies (large v and w)
this configuration indeed reduces to a rotated NS5-brane in ITA. Since there are N, such
curves corresponding to the choice of ¢ above, we do in fact find all the vacua this way (as
per Witten Index computations, which show Tr(—1)f" = N,).

To preserve SUSY the flavor branes must continue to extend along the z°, z!, z2, 23,
and 28 directions, in particular they cannot rotate into the w directions. Therefore when

the NS5y brane rotates, the flavor branes ending on it must translate in w, sliding along

the corresponding D6-brane. This translation corresponds to meson vevs [50, 53].

2.2 Summary of Field Theory Results

The dynamics of the N’ = 2 supersymmetric SU(N,) gauge theories constructed above
and the dynamical breaking of flavor symmetry have been studied in detail in Refs. [42, 43,
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54]. Here we briefly summarize the results.

The theory with N; massless quark hypermultiplets has U (Ny) flavor symmetry, SU(2) g
symmetry, and a non-anomalous discrete Zan,—n, subgroup of U(1)g. We are interested in
the A/ = 1 perturbation of the theory by the adjoint mass term y Tr ®2. The moduli space
contracts to the set of points that give maximally degenerate (genus zero) Seiberg—Witten
curves.

In the semi-classical regime with a large adjoint VEV, there are ‘t Hooft—Polyakov
magnetic monopoles. Zero modes of the quarks around a monopole generate flavor quantum
numbers for the magnetic monopoles. It was shown that they come in completely anti-
symmetric rank-r tensor representations with y,C, multiplicities.

The strongly coupled regime was studied with a variety of techniques. When Ny < N,
there are vacua parameterized by an integer r = 0,1,--- ,[N;/2] ([z] is the Gauss’ symbol)
where the flavor symmetry is broken dynamically as U(Ny) — U(r) x U(Ny —r). If r <
Ny /2, the physics around the vacuum can be described by an IR free effective Lagrangian
[24] (a “magnetic dual” to the asymptotically free semiclassical SU(N,.) description) with
SU(r) x U(1)Ne="=! gauge group. N; “magnetic quark” hypermultiplets transform as
the fundamental representation of SU(r) while there are “magnetic monopoles” for each of
the “magnetic” U(1) factors. When perturbed by the adjoint mass term, all gauge groups
are Higgsed by the condensates of magnetic objects, corresponding to the confinement of
the electric theory. It was argued in Ref. [42, 43] that the semi-classical monopoles in the
rank-r anti-symmetric tensor representation smoothly match to the baryonic composites of
magnetic quarks of the low-energy SU(r) theory based on circumstantial evidence. Upon

mass perturbations, one can count the number of vacua:
Ny = (2N, — N2Vt (2.17)

originating from r-vacua (r < [Ny/2]) with (2N, — Ny) copies due to the Zay,—n, sym-
metry. Therefore the flavor symmetry breaking and confinement have a common origin in
these theories: condensation of magnetic objects with non-trivial flavor quantum numbers.

Strictly speaking, however, the existence of monopoles in the anti-symmetric tensor rep-
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resentations was demonstrated only in the semi-classical regime and its extrapolation to
the strongly coupled regime and the matching to the baryonic composite was a conjecture.
When r = Ny /2 (possible obviously only when Ny is even), the low-energy magnetic gauge
group is superconformal with an infinitely strong coupling 7 = —1. Due to some reason,
the same low-energy effective action seems to describe the dynamics of flavor symmetry
breaking even though there is no weakly coupled description of the theory.

When Ny > N, there is a new vacuum without flavor symmetry breaking. It is at the
same point on the moduli space as the r = Ny — N, vacuum, while the finite quark mass
perturbation shows that there are additional

Ny—Ne—1

No= > (Ny=N.—1)n,Cp (2.18)
r=0

vacua with unbroken flavor symmetry.

2.3 Seiberg Duality from M-Theory

As we noted in the last section, the effective theories at the r-vacua which survive SUSY
breaking are actually IR free theories for r < Ny /2. In particular, at the baryonic root we
find a weakly coupled theory whose low energy physics is well described by an IR free
SU(N,) gauge theory, where N, = N 7 — N. This is very reminiscent of Seiberg duality in
N =1 theories [17]. In [24], this observation was used to “derive” N’ = 1 Seiberg duality
by mass perturbing the N = 2 theory®. We will consider this scenario using M-theory.

Seiberg duality was first realized in ITA string theory in Ref. [48] via the exchange of
two NS5-branes, as illustrated in Fig. 2.8. To avoid a singular configuration the authors
first displaced one of the NS5-branes in the 7 direction, which corresponds to turning on
a Fayet-Illipolous term in the field theory description. This process corresponds to Seiberg

duality with one caveat, the full U(Ny) x U(Ny) flavor symmetry is not realized in the

3Unfortunately, the result was not quite Seiberg duality as there was an extra non-renormalizable coupling
in the effective action associated with integrating out the massive adjoint scalar which becomes relevant in
the low energy limit.
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above ITA configuration nor in its M-theory lift.
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Figure 2.8: In ITA Seiberg duality is realized by brane exchange.

An alternate proposal for realizing Seiberg duality via string/M theory was made later
that year by Schmaltz and Sundrum [55]. Using the M-theory lift of the above brane setup,
they found that Seiberg duality could be understood by taking the A — 0 and A — oo
limits of the resulting single M5 brane configuration. In particular, they found that the two
limits were related by an exchange of branes and therefore correspond to an electric theory
and its magnetic dual. However, their arguments depended on turning on finite bare quark
masses.

The following year this scenario was clarified and extended to the massless case by Hori
[562]. He observed that in M-theory, the M5-branes can be crossed with no singularity even
without the Fayet-Illiopolous parameter. In fact, at the root of the baryonic branch, when
Ny > N.+ 1 the M5-brane consists of two connected components [53] and the duality
corresponds to simply translating one past the other along x°. The 2% coordinate of a
connected component does not affect the field theory description and so Hori argues that

this process clearly preserves its universality class.

Most recently, in Ref. [46] Seiberg duality was understood within the context of geomet-
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ric engineering as a birational flop in a T dual description consisting of D5-branes which
are dual to the D4 branes in ITA and degenerations in the T-dualized circle which are dual
to the NSb5-branes.

We propose a new description of Seiberg duality which has no moving branes and is
valid at any fixed, finite value of A. Consider the case Ny > N, at the root of the baryonic
branch in an N/ = 2 theory with no bare quark masses. Then according to Ref. [53] the

connected components of the M5-brane are described by
t=v™ and t=o", N,=N;-N, (2.19)

as seen in Figs. 2.9 and 2.10. These two M5 branes intersect at N, — N, points.

The crucial realization is that the reduction of this configuration to ITA and in particular
the z° location of the NS5-branes is not uniquely defined [22]. Rather, we claim, that the
effective location of the NS5-branes depends on the energy scale probed, E. We consider
charged hypermultiplet matter corresponding to M2-branes of disk topology stretched be-
tween the two branches of the M5-brane. It is clear from Fig. 2.10 that the area of such an
M2-brane (and therefore its energy) is proportional to the distance in v between the two
branches of M5-brane at its position in 28. This restricts the regions on the M5-brane that
a quark of a given energy can probe. Thus, for such a probe, one may effectively place an
NSb5-brane at the intersection of the corresponding Mb5-brane and v ~ E. A high energy
E1 > A (semiclassical) M2-brane probe is restricted to probe large features at small 5.
Thus, to such a probe, the configuration consists of an NS5-brane with an NS5y brane on
its left, V. color branes connecting them and N; semi-infinite flavor branes which extend
to the right. That is, the reduction to type IIA is Fig. 2.8a, which can roughly be obtained
by drawing an NS5-brane wherever the line £ crosses an M5 brane. This corresponds to
the SU(N,) asymptotically free electric theory. However, low energy quarks can only exist

6. Thus, a low energy E; < A M2 brane probe corresponding to a

at sufficiently large x
charged quark is only sensitive to the configuration of the M5-brane at large 2%, the right
side of Fig. 2.9. Thus, if we consider the portion of the M5-brane configuration accessible

to such a probe, we would find that the corresponding reduction to ITA at F5 is Fig. 2.8d.
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Figure 2.9: At the root of the baryonic branch, the low energy physics (to the right of the
intersection) is the SU(N,) x U(1)Ne=Ne magnetic theory.

Now, note that the two M5-branes cross at the QCD scale A, and at energy scales below
this, that is, further right in the figure, the M5-brane is to the left of the M5y brane. Thus
a probe at energies below the QCD scale will see the two M5 branes interchanged, which
is the usual description of the magnetic theory. This theory is IR free because the branes

separate as v increases, and has a Landau pole where the branes cross.
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Figure 2.10: Baryonic root of SU(8) with 13 flavors

2.4 Flavor Symmetry Breaking

2.4.1 Flavored magnetic monopoles

Recall that a flavorless magnetic monopole (or dyon) in a ITA realization of the electric
picture is a D2-brane with disk topology bounded by a circle which extends along one color
brane, down an NS5 brane, back along another color brane and then finally back along the
other NS5-brane, as in Fig. 2.1. More generally magnetic monopoles may be charged under
the U(Ny) flavor symmetry. In this case the monopole may include fundamental strings
extending from the D2-brane to a flavor brane. Another version of the s-rule states that
at most one such fundamental string can extend from a given monopole to a given flavor
brane, which identifies these strings as excitations of the fermionic zeromodes present in

flavored monopoles.
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The M-theory lift of this monopole configuration is a single M2-brane with the topology
of a disk. Thus, its boundary is a circle which wraps the M-theory direction a total of zero
times, as seen in Fig. 2.11.

The microscopic mechanism behind the flavor symmetry breaking of Refs. [42, 43, 54] is
the condensation of magnetic monopoles in an antisymmetric tensor flavor representation
drawn in Fig. 2.11a. The transformation properties under U(Ny) can be read off from the
brane cartoon. If the monopole does not wrap any flavor branes it transforms as a flavor
singlet. A monopole that wraps one of the flavor branes transforms in the fundamental rep-
resentation, while wrappings of more than one flavor brane transform in the antisymmetric
representation of the flavor group. To see why this representation is antisymmetric, notice
that in ITA, if the D6-branes are moved between the NS5-branes, a monopole consists of
a D2-brane connected by strings to D6-branes. The s-rule provides an exclusion principle,
restricting the number of strings connecting a monopole to a D6-brane to 0 or 1. As a
consistency check on this picture, notice that there are 2Vf configurations of wrappings
which agrees with the known number of states in the representation.

In order to understand how semiclassical magnetic monopoles in the UV theory are
related to the IR degrees of freedom, we can consider an M2 brane corresponding to a high
energy monopole configuration and follow its decay into the IR. Deforming the UV theory
away from the baryonic root to clearly visualize its charges, such a monopole is pictured in
Fig. 2.11a. We deform back to the baryonic root and then allow it to decay, requiring that
its wrappings (i.e. charges) are preserved. Its energy will become sufficiently low that it is
best described using the dual magnetic description, that is, with the NS5 branes switched.
Now, if we deform the IR theory to a generic point in its Coulomb branch and keep track
of the wrappings, this configuration corresponds to magnetic baryons as seen in Fig. 2.11b.
The magnetic theory is IR free, and so these baryons decay into magnetic quarks whose
condensation provides the order parameter of the flavor symmetry breaking.

It is also easy to see that the correlation between the electric charge and chirality of
dyons discussed for SU(2) gauge theories in Ref.[19] follows from the fact that the monopole

is topologically a disk. All monopoles with even chirality come from monopoles whose
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Figure 2.11: a) A magnetic monopole in an antisymmetric tensor flavor representation. b)
In the dual magnetic picture it becomes a baryon.

boundary wraps an even number of flavor branes and therefore the M-theory direction an
even number of times along the M5 brane as well. Each flavor brane wrapping introduces a
hypermultiplet into the antisymmetric representation and hence the monopole has chirality
(-1)# = 1. Each color brane wrapped yields a unit (using the conventions of [19]) of
electric charge and so the monopole acquires an even electric charge. This argument works

similarly for odd chirality and odd electric charge.



2.4. FLAVOR SYMMETRY BREAKING 37

2.4.2 Symmetry breaking pattern

As we reviewed in section 2.2, field theory calculations in a variety of limits showed that

flavor symmetry is generically broken
U(Nyg) = U(r) xU(Ny—1) (2.20)

in softly broken N = 1 asymptotically free (Ny < 2N.) SQCD in the limit that bare quark
masses vanish. We will draw string and M-theory realizations of these limits and use them
to reproduce the qualitative results of several field theory calculations. In particular, in the

semiclassical limit, we will relate r to the number of color branes attached to flavor branes.

a) b)
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Figure 2.12: (a) Semiclassically when SUSY is broken by rotating the NS5y brane, r color
branes connect to flavor branes while the rest slide to v = 0 (b) The dual magnetic description
of the nonbaryonic branches can be understood similarly to the semiclassical case.

2.4.3 Semiclassical analysis

Following Refs. [42, 43, 54] we begin by considering bare quark masses much larger than
the QCD scale so that a semiclassical (ITA) analysis is valid. This will allow us to count
the total number of vacua for comparison with later calculations. Recall from section 2.1.7
that after rotating the NS5g brane all color branes must either slide to v = 0 or connect to
a flavor brane as in Fig. 2.12a. The number of color branes connecting to flavor branes, r,

clearly can neither exceed the number of color branes nor the number of flavor branes. We



2.4. FLAVOR SYMMETRY BREAKING 38

illustrate the simple case of the vacua arising this way with the bare quark masses all equal
m =m; > A in Appendix A for the case of SU(3) with Ny = 4.

To count the number of vacua with generic quark masses, notice that r flavor branes
can attach to color branes in (A;f ) ways (recall that there is no combinatoric factor from
choosing which color branes to attach as these choices are gauge equivalent), leaving N, —r
color branes which form a line* [51] centered at v = 0, as shown in Fig. 2.7. This line
can be rotated by integer multiples of 7/(N. — r) without affecting the z'° coordinates
asymptotically far away, corresponding to the anomaly-free R-symmetry subgroup. The
N, — r inequivalent orientations of the line result in N, — r different vacua, in agreement

with the Witten index of this theory. Thus the total number of semiclassical vacua (assuming

all bare quark masses are distinct and nonvanishing) is

min(Nc+1,Ny)

Ne= Y (Ne-n)(¥) (2.21)

r=0

in agreement with computations from field theory considerations in Refs. [42, 43, 54].

2.4.4 Nonbaryonic branches

Semiclassically flavor symmetry is broken by meson vevs equal to um; ~ u tanf which
is the distance in the w plane shown in Fig. 2.12a. These vevs vanish when the bare quark
masses vanish, apparently restoring the explicitly broken flavor symmetry. However we will
see that, if we include quantum effects, in some vacua the flavor symmetry remains broken
even in this limit. For simplicity let all of the bare quark masses be equal m = m; < A.

The r = Ny/2 theory is superconformal in the IR and generally difficult to understand.
An example of M5-brane associated with such a vacuum is drawn in Fig. 2.13. The two
branches, corresponding to different NS5-branes upon reduction to ITA, intersect at exactly
two points. Cross-sections to the left and right of these two singularities are seen in the first
and second lines of Fig. 2.14. They are topologically distinct and correspond to distinct
reductions to ITA, yielding different effective field theories.

4Actually they form an ellipse whose semi-minor axis scales with . This ellipse degenerates to a line
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Figure 2.13: This Mb5-brane configuration corresponds to the r = 2 nonbaryonic root of
SU(3) with 4 flavors. In the IR (the right side of the picture) a reduction to ITA produces
two parallel, almost coincident NS5-branes indicating that the theory is strongly coupled.
The fact that the distance between the branes converges indicates that the IR theory is
superconformal.

We will be interested in the IR free case of 0 < r < Ny /2, corresponding to nonbaryonic
branches. The fundamental degrees of freedom must be magnetic because in the UV this
theory has a Landau pole (M5-branes cross) separating it from the semiclassical region with
electric degrees of freedom. Thus flavor symmetry breaking can only be caused by magnetic
quark vevs, which like meson vevs (meson vevs are quadratic in quark vevs) correspond to

distances in the w plane. Semiclassically this distance was pm; and so vanished when the

when 6 = 0 and a circle with an An,_,—1 singularity in its center at 8 = 7/2.
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) O

Figure 2.14: Above are M5-brane cross-sections at constant 2% corresponding roughly to
constant energy scales of the r = 2 nonbaryonic root of the SU(3) theory with 4 flavors
and no bare quark masses. Reading from left to right and top to bottom the energy scale
of the corresponding M2-brane probes decreases. The M theory direction is parameterized
by darkness.

bare quark masses were taken to zero. Quantum mechanically these flavor branes have
width O(A), critically changing the distances between them. As a result the r nonvanishing

magnetic quark vevs
a = /ulmi = AJr) (2:22)
do not vanish when the bare masses are eliminated, as seen in Fig. 2.12b. These quark vevs

break the flavor symmetry
U(Nf) — U(T‘) X U(Nf — 7‘). (2.23)

These vevs also break the global Zgn,— N, symmetry and so there must be 2N, — Ny copies
of this configuration. When r» = 0, ¢ = ,/um; and flavor symmetry is unbroken. Again

there are (Nrf ) ways to choose r quarks, leading to a total of

N = (N, — N,)2Ns 1 (2.24)
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vacua of this type. Notice that when Ny < N, N; agrees with N, and therefore by

supersymmetry this is a complete classification of the vacua.

2.4.5 Baryonic branch

The above analysis is incomplete when Ny > N, because every color brane can be
broken by a D6-brane and the two halves displaced from each other along the w plane by
a distance (baryon vev) exactly canceling the displacement measured by the dual quark
vev. Clearly this requires Ny > N, because Ny is the number of D6-branes while N is the
number of color branes, and each color brane requires a D6-brane along which to break, as

illustrated in Fig. 2.15.

NS 5 NS 5 ;
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Figure 2.15: On the baryonic branch, the baryon vev pA is realized as a relative slide of the
two halves of the configuration along a collection of D6-branes.

More concretely, at the root of the baryonic branch the unattached N, — N, color branes

form a circle. This means that N, — N, magnetic monopoles (or dyons), which are between
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adjacent color branes, become massless and can acquire vevs. The baryonic branch has
one more massless monopole compared to the nonbaryonic branch, which is enough to
completely Higgs the U(l)NC_NC, and therefore there are enough vevs to control the center
of mass motion of this set of color branes. The center of mass mode of the entire system
is infinitely massive and so a shift in the center of mass of the N, — N, branes leads to an
opposite center of mass shift of the Seiberg dual SU(N,) gauge theory along the w plane,
the same shift parametrized by all quark vevs. One result is that the magnetic monopoles
are charged under the U(1)g baryon number. The crucial implication is that a slide along
the w plane in the U(l)NC_NC system can undo the w-shift in the SU(N,) configuration
which led to the flavor symmetry breaking quark vev. Thus flavor symmetry is unbroken
on the baryonic branch.

These geometrical quantities can be related to the corresponding field theory calculation
[42, 43, 54] by considering the following superpotential terms [24] in the magnetic description

of the baryonic root

1 N.—N, N.—N, N.—N,
WO ﬁTf(QQ)( ST ok) = Y trerée+ud D> Tty (2.25)
¢ k=1 k=1 k=1

Here ¢ and ¢ are magnetic quarks, e; and €, are flavorless magnetic monopoles, zj are
constants and 1, are the dual photons of the abelian part of the SU(N,) x U(l)NC_NC
dual gauge group. From the superpotential we see that each magnetic monopole is charged
under a U(1) while the dual quarks are charged under all of the U(1)’s.5 As a result the D

term equation for each U(1) is

1
ﬁ’ﬂr(q(j) — er€r + pAzy = 0. (2.26)

c
This means that, because there are as many ex’s as z’s, Tr(gg) can vanish if each eéy
is chosen correctly and, in fact, this solution is consistent with the rest of the D and F

term constraints. Thus we see that the D term equation for the difference of two vevs is

This is in contrast to the nonbaryonic root, where there is one less massless magnetic monopole and so
after a basis change the dual quarks and magnetic monopoles are charged under disjoint U(1)’s.



2.4. FLAVOR SYMMETRY BREAKING 43

interpreted in M-theory as the following statement. If the connected components of the
Mb5-brane slide apart in the w plane along the D6 branes bisecting the N, — r color branes
then, because the components are rigid, they also separate along the w plane at the semi-
infinite flavor branes. In other words by trading a monopole vev for a magnetic quark vev,
we find vacua which preserve flavor symmetry. These two distances, whose differences are
preserved, are marked with double-headed arrows in Fig. 2.15.

To count vacua on this branch, consider the dual SU(N,) theory whose gauge symmetry
is broken by the adjoint scalar vevs of the r color branes attached to flavor branes. As
in the semiclassical case, the remaining N, — r color branes form a line which can have
N, — r orientations preserving the M theory coordinate asymptotically far away, yielding a
multiplicity of N, — r times the combinatoric factor of (]\,{f ) from the choice of which flavor
branes to connect. In all, this provides

N,
No=>"(Ne =) (V) = Noe = N (2.27)

r=0

states, and thus completes the classification of vacua.

2.4.6 An example, SU(3) with N; =4

We will consider in some detail the M5-branes associated with the r-vacua which survive
breaking to N’ = 1 for the case of SU(3) with Ny = 4 and equal quark masses, m; = m.
This case is rather special in that the coordinates of these vacua in the moduli space can
be analytically determined as a function of mass. Thus, we can explicitly draw out the
corresponding Mb5-brane configurations and test our claims for the brane interpretations of
the r vacua in various regimes.

In the case of equal and large bare quark masses, we can clearly see that the M5-brane
configurations which survive breaking to A’ = 1 in Fig. 2.16 do indeed correspond to r flavor
branes and color branes connected to each other. In the massless case, the relevant curves
are more difficult to interpret, though we include them for completeness in Fig. 2.17. Note

that in the limit that m — 0, the r = 1 non-baryonic root and the baryonic root converge
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(a) The baryonic root (b) A non-baryonic r=0 root

|

(c) A non-baryonic r=1 root (d) The non-baryonic r=2 root

Figure 2.16: The M5-brane configurations corresponding to r-vacua in SU(3) with 4 flavors
in the semiclassical limit, i.e. with m; = m > A. The flavor branes and color branes which
have connected are represented by semi-infite tubes extending from the left branch of the
Mb5-brane. The connections between the two NS5-branes are the remaining color branes,
pairs of which have condensed massless monopoles between them.

»
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to the same point in moduli space, the m = 0 baryonic root. Just as in the superconformal
case, it is easier to interpret these brane configuration if we consider their cross-sections in
Figs. 2.18 and 2.19, though we will leave the interpretation of these cross-sections for future
work.

(a) The baryonic root (b) An r=0 vacuum (¢) The r=2 vacuum

Figure 2.17: M5-brane configurations at the r vacua in SU(3) with 4 flavors and Vm; = 0.

Figure 2.18: Cross sections at constant z® of the M5-brane of Fig. 2.17b (the r=0 root).
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Figure 2.19: Cross sections at constant x% of the M5-brane of Fig. 2.17a (the baryonic root).

2.5 Discussion

Using the duality of type ITA string theory an M-theory, we have gained a geometric
window on non-perturbative physics in supersymmetric gauge theories. We have constructed
a new realization of Seiberg duality that relies on an energy scale dependent reduction
of M-theory to ITA. We have found the M2-branes that correspond to flavored magnetic
monopoles and argued that they correspond to magnetic baryons in the dual magnetic
theory, which in turn decay to magnetic quarks. And finally we have interpreted baryon
vevs as the relative sliding of two halves of an M theory configuration along a Taub-NUT
singularity.

As an application of the above constructions, we have reproduced the field theory results
of [43]. In particular we have correctly reproduced the flavor symmetry breaking patterns,
the order parameters of the symmetry breaking and the counting of states in various regimes.
We can interpret these countings in terms of discrete rotations of a line of M5-brane in the
v plane.

For future work, we note that the case r = Ny /2 is difficult to analyze using traditional
field theory techniques, as it is superconformal and strongly coupled in the IR. However it
is possible that by deforming the corresponding curve, an analysis similar to the Seiberg
duality of monopoles above may be possible in this M-theory setting.

Thus, we see that a modified classical geometry which incorporates the non-perturbative
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behaviour of DO-brane probes through an extra dimension provides a powerful tool for
analyzing gauge theories. One might wonder if the behaviour of D-branes in string theory
can result in descriptions of physics which depart from the naive classical geometry in more
substantial ways. The next section explores a circumstance in which non-commutative
geometry of space-time arises naturally as the effective description of certain brane world-

volume theories in string theory.
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Chapter 3

Noncommutative Gauge Theories

and the Seiberg-Witten Map

As we have noted earlier, the fact that the fluctuations of N coincident D-branes have
a description in terms of a theory of N x N matrix valued fields is suggestive of a role for
a noncommutative generalization of geometry [45] in string theory. By noncommutative
geometry, we simply mean the possibility that the coordinates of space-time are no longer
commuting observables. The simplest such example would be an imitation of the noncom-

mutativity of position and momenta in quantum mechanics, but for space-time coordinates,
[z#, "] = 16", (3.1)

where 0¥ is very small. Note that the non-trivial commutation relation between the space-
time coordinates imply that #** defines a minimal quantum of area.! Therefore, one would
expect that quantum field theories defined on such a space-time would be intrinsically
non-local. As to the origin of the noncommutativity, one might imagine that 6" arose,
in analogy with the Higgs effect, as the vacuum expectation value of an antisymmetric

tensor field. However, as 0" is a tensor rather than a scalar, its components give rise to

INote that such quantization of area, though of a different character, can also be motivated by studies
of quanum gravity as seen explicitly in the work of Ashtekar and collaborators [8].
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a preferred direction in space-time. This preferred direction in any given frame violates
“particle Lorentz symmetry” (see [56, 57] for a review), and suggests that limits on 6#” may
be obtained by comparing with a variety of Lorentz violation experiments.

However, to address these issues and make concrete predictions certainly requires that
one can define quantum field theories on a noncommutative space-times at all!l Due to the
presence of non-locality, the possibility of making sense of such theories was regarded with
skepticism by much of the physics community. The situation changed dramatically when it
was realized that a generalization of U(N) Yang-Mills gauge theories defined on noncom-
mutative spaces appears (Noncommutative Super Yang-Mills, NCSYM) in a certain limit
of string theory [58, 59] on the worldvolume of D-branes. Further, as we will review shortly,
it was noted [59] that in that limit, a conventional description in terms a gauge theory
on a commutative space was still possible, though with infinitely many higher derivative
couplings proportional to powers of #” added to the action. Therefore, they argued that
there must exist a mapping between commutative gauge field configurations to noncommu-
tative ones which is compatible with the gauge structure of each. The mapping between
these descriptions has come to be known as the Seiberg-Witten (SW) map. Describing a
method for explicitly computing this map order by order in 8 for any gauge group G is the
primary focus of this chapter. One of the primary uses of the Seiberg-Witten map is that it
allows one to concretely analyze theories on noncommutative spaces as theories defined on
commutative spaces with additional higher dimensional couplings. Further [63], the map
also provides a method of constructing noncommutative gauge theories with gauge groups
other than U(n).

We begin with a review of the relevant facts regarding gauge theories on noncommutative
spaces and the physics underlying the Seiberg-Witten map, as well as some basic facts
regarding expansions of the star product that will be useful in the rest of the paper. In
section 3.2, we review the methods developed in [63], which provide an essential starting
point for our work. In Section 3.3 we replace the gauge parameters appearing in the SW
map with a ghost field, which makes explicit a cohomological structure underlying the SW

map. In Section 3.4 we define a homotopy operator, which can be used to explicitly write
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down the SW map order by order in 6. Finally, in Section 3.5 we apply our methods to
calculate some low order terms of the SW map. Note that the results that follow were
obtained in collaboration with Dan Brace, Bianca Cherchia, Andrea Pasqua, and Bruno
Zumino [74].

3.1 General Review of NCSYM in String Theory

3.1.1 Definition of NCYM

We begin with a quick overview of the standard definition of noncommutative Yang-
Mills (NCYM) theories in R?". The crucial construction that we will use to define a field
theory on noncommutative R?" is the Moyal-Weyl product. This product, the “x” product,
is a noncommutative and associative deformation of the usual, commutative product on the

space of functions on R?" associated with a constant Poisson tensor #%, and is defined by,
i ii 5.7,
frg=f22"%0%g. (3.2)

In particular, this product has the property that it implements the noncommutativity of

the coordinate functions we alluded to above,
[z % 27] = i6". (3.3)
In fact, we take this deformed algebra of functions on ordinary R?" as defining what we
mean by noncommutative RgT. The primary utility of the Moyal-Weyl product is that it
allows us to define field theories on noncommutative spaces by using the actions, gauge
symmetries, etc. of the corresponding theory on the commutative space, and just replacing
ordinary products with star products. So, we can define noncommutative gauge fields A;
which tranform under infinitessimal noncommutative gauge transformations generated by
A as,
6A; = O;A +iA % A; —iA; % A (3.4)

We define the noncommutative field strength associated with this gauge field to be,

Fij = 0;A; — 0;A; —iA;x Aj +iA; x A;. (3.5)
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Now, as we will explian in the next section, one finds that string theory defines an effective
notion of a metric G;; on the noncommutative R?" that can be used to construct an action

for this noncommutative gauge theory,
S = / Vdet GG¥ GV'Tx Fyj % Fyj. (3.6)

One can, in principle, use the above action to quantize the theory perturbatively, with
the only modifications being non-local phases associated with the substitution of Moyal-
Weyl products rather than ordinary products at vertices. We will not pursue this line of
reasoning further here but note that the resulting perturbative expansion has subtleties
[60] associated with infrared divergences. For example, when 0" is large, the Moyal phases
make the noncommutative perturbative expansion more tractable, but one finds subtleties
due to light M? ~ 6=, large | ~ v/@ solitons and instantons. In particular, even though
though the theory is formally very similar to ordinary Yang-Mills, it is not clear that one
can use the usual arguments of perturbative QFT to show that this theory is well defined.
However, arguments from string theory suggest that at least for supersymmetric cousins of

the above theory, this is in fact the case.

3.1.2 NCSYM from String Theory

To gain intuition for how noncommutativity might arise in string theory, it is useful to
review an very familiar quantum mechanical system where noncommutativity of space-time
coordinates appears - the motion of an electron in a plane moving in a large transverse

magnetic field, \ Y

L= ;—m + 2y—m - ?m@. (3.7)
Since p; = mz and py = my — %x, we see that as B — oo, the kinetic energy can be
neglected and = and y become canonically conjugate. In the quantum theory, this limit
is equivalent to making a projection P onto to the lowest Landau level, after which the
operators Pz'P ~ z' no longer commute

C

[z,y] = iE. (3.8)
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This suggests that considering the second quantization of such a system might be inter-
pretable as a field theory defined on a noncommutative space. In string theory, the end-
points of open strings on a D-brane act like charges (i.e. the W-bosons of the gauge theory).
Thus, perhaps noncommutativity would appear on a D-brane if one adds a large magnetic
field. It turns out that a non-zero NS B-field acts precisely like a magnetic field on the
world-volume of the brane. This can be seen by noting that the gauge symmetry of the
NS B-field B — B + dAyg also acts on the center of mass U(1) part of the gauge field
of the brane a — a — Ayg, so that gauge invariant quantities must always be constructed
out of the quantity f + B. In particular, one can trade a non-zero B-field on a brane for a
magnetic field strength of the center of mass U(1) via a gauge transformation.

Now, we review the work of Seiberg and Witten [59]. Consider open string theory
with worldsheet ¥ and boundary 3% mapping to the worldvolume of the brane. While
the arguments we present involve only the bosonic fields on the worldsheet and therefore
could be done for the bosonic string, we restrict ourselves to the non-tachyonic superstring,
simply omitting the fermions for brevity. Assume the space-time is flat, with the sigma
model, classical closed string metrics g;; and B;; constant, where 4,; are taken to run
over just the spatial directions on the brane. Note that in what follows, we will only be
considering the case of noncommutativity in a time-like direction. The action for the open
string is,

1

4o

1 oy o
— [ giouaios — L | Bizioa.
4m’/zg” wror 2/82 Eh

A background gauge field (in the U(1) case) a;(x) on the brane couples to the string world-

/ (gijaazia%j - 27ria'Bijeabaa$iab$j)
; (3.9)

sheet by
—i/dTai(a:)BTaci. (3.10)

Now it is easy to see that a constant B-field on the brane has the same physical effect as

a; = —%Bijxj, i.e. magnetic field f = B. Further, note that the effect of B;;, note that
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consider the is to consider the boundary conditions of the open strings,
g,-janxj + 27rz'a’Bz~j8txj\aE =0, (3.11)

Thus, we see that increading B;; interpolates between Neumann and Dirichlet boundary
conditions on pairs of directions along the brane. Thus, the Dp-brane appears to break up
into an infinite collection of D(p-2r) branes, where 2r are the directions along which B;; is
taken large. If B is large in all spatial directions, the Dp-brane becomes an infinite collection
of DO-branes. The low energy effective theory that describes coincident D0-branes is the
dimensional reduction of SYM in 9 + 1D down to 0 4+ 1D matrix quantum mechanics with
gauge group U(oo). Now, in the last section, we briefly reviewed how one can construct
Yang-Mills theory on a noncommutative space using functions on commutative R” with a
deformed Moyal-Weyl product. However, one can instead use the matrix representation
of the commutation relations 3.1 on an auxiliary Hilbert space. The Yang-Mills fields are
then just operators acting on the Hilbert space, and the action is constructed using an
appropriately defined trace over the Hilbert space. One can in fact show that the resulting
formulation of the supersymmetric, noncommutative Yang-Mills theory [61] is precisely the
U(oo) gauged matrix theory associated with the constituent D0O-branes described above.
While this approach provides a beautiful interpretation of the origin of noncommutative
geometry in terms of the non-abelian nature of the gauge theory on DO0-branes, a more
direct construction of NCSYM in terms of a Moyal-Weyl formulation is desirable. Towards
that end, let us consider very explicitly the construction of a low energy effective theory
for the open string theory at tree-level. Consider open string worldsheets which look like
several strips extending out to infinity (associated asymptotic open string states) attached
at a disk (representing the smeared out interaction vertex). These worldsheets represent
the lowest order contribution to the scattering of the associated asymptotic string states.
As the string worldsheet theory is conformally invariant, one can use that fact that there
exists a conformal mapping of this worldsheet to a compact disk to simplify matters. In
particular, this transformation maps the ends of each of the infitine strips (which encode

the asymptotic open string state) to points on the boundary of the disk. To each of these
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points is associated an operator which reflects the asymptotic string state, known as a vertex
operator. Therefore, the correlation functions of operators inserted on the boundaries of the
disk can be used to compute the interactions of aymptotic open string states. The vertex
operators for strings are constructed out of the fields z* which describe the embedding of
the string into the space-time. States of momentum p in space-time correspond to vertex
operators which have factors of the form e””®. Thus, in order to compute interactions
between such states, we need to first compute the correlation functions of the z* fields on
the disk with the boundary conditions associated with the presence of the non-zero NS
B-field. This is most easily done by making an additional conformal mappting to the upper

half plane, Im z = 0, in which the boundary conditions become,
9ij(0 — 0)a’ + 2mia/ By(0 — 9)z| __ = 0. (3.12)

The correlation functions with these boundary conditions have been computed in [62],

yielding,
(& (2)4 () = —o[g¥ log = — 7| — g log | — 7 (3.13)
+GYlog |z — 2|2 + = Hijlogz_zl + DY (3.14)
2ol z—2 ’ )
where we have defined
.. 1 %] 1 1 ij
Gl=|——=]| = 3.15
(g+27roe’B)S (g+27ra’ng—27ra’B> ’ (3.15)
09 = 271’ Y = —(27d')? ¥Bg —2md’B ! (3.16)
g+2nad'B) , g+ 2na'B ’

and the DY are unimportant for what follows. Closed strings correspond to operator in-
sertions in the bulk of the disk, and one can easily see that singularities associated with
closed string operators arise only from the first two terms. These singularities are respon-
sible for anomalous dimensions of the vertex operators e””? which give rise to the mass
shell condition of the corresponding states. Thus, it is natural to associate the metric g%/

with closed strings. As asymptotic open strings correspond to operator insertions on the
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boundary, to perform the same analysis for the open strings, we need the restriciton of the

above expression to the fields on the boundary (here ¢(+) = £1),
(z' (1) (1')) = =/ GV log(r — 7')? + Z0Ue(r — 1), (3.17)

We see that open string mass shell conditions are likewise associated with the metric G*.
Thus, it is natural to consider G¥ as the effective metric for open strings. Now, what is the

effect of 47 It just makes the end-points of open strings noncommutative,
[2'(7), 27 (1) =T (.Ti(T).Tj (77) — z*(r)z’ (7'+)) = ifY. (3.18)

To see its effect on the scattering amplitudes of asymptotic open string states, we use the

above correlation functions to construct the tree level scattering of k£ such open strings,

k , y ko
<H e"””'“”")> _ o S PR () <H e“”"'””””)> . (319)
n=1 G0 G,0=0

n=1

Thus, we see that the only effect of % is to introduces certain additional phases into the open
string scattering amplitudes - in fact, it is easy to see that these phases are just associated
with the Fourier transform of the Moyal-Weyl deformation of the ordinary product! Now,
in string theory, each open string state corresponds with a field on the brane and k-point
tree level amplitudes are associated with the couplings of the product of k such fields in the
action. Thus, we can model the effect of € as (at tree level in string coupling) by deforming

the associated coupling in the action by
/T‘l“q)l(Pg"'(I)n —)/T‘I“‘I)l*ég*"'*q)n. (320)

Therefore, we find that the effective action of this theory is naturally expressed in terms
of x products, and can therefore be interpreted as a theory defined on a noncommutative
space. However, we would like to exhibit a limit in which the physics is completely captured
by pure NCSYM. To do this, we need to take the low energy limit and decouple massive
open and closed string modes by taking o/ — 0 keeping G% and 0% fixed,

o ~er 0 gij~e—0 fori,j=1,...,2r (3.21)



3.1. GENERAL REVIEW OF NCSYM IN STRING THEORY 56

where i = 1,...,2r are the spatial directions along the brane. In this limit (the SW limit),
(z'(7)27(0)) = %6Ye(r), and for any pair of vertex operators representing fields on the
brane, f(z(7)) and g(x(7)), we have the operator product

lim : f(z(7)) : :g(z(0)) :=: f(z(0)) * g(z(0)) : . (3.22)

70t

Thus, in this limit, the algebra of vertex operators and therefore the space of fields in the
effective action on the brane is explicitly deformed into a noncommutatative algebra.
However, while we have seen that the effective action can be naturally expressed in
terms of deformed products, we have no reason yet to expect that the gauge symmetries
of the theory are also deformed. Thus, we need to analyze the gauge symmetries of these
fields in the SW limit. Gauge symmetries in space-time are associated with symmetries of
the world sheet path integral which are implemented by a BRST physical state condition.
Clearly, dya; = 0;A is manifestly a symmetry of the classical worldsheet action, even with
modified boundary conditions. However, we must check that the full quantum theory does
not violate this symmetry. In particular, we need to consider the variation dya; = ;A of

—i [ dra;(z)0,z

the full string path integral by expanding e in powers of a; and varying,

0NZ = —i / dTo-\ — / dra;(z)0,z" - / dr' 0\ (3.23)

The subtlety here is that the second term contains operators evaluated at the same world-
sheet points, and therefore have infinite ambiguities associated with them. Their value
depends on a choice of regularization of the worldsheet path integral. Pauli-Villars regular-
ization can be used to show that ordinary gauge symmetry is a possibility. However, if we
consider point-splitting regularization in which we never allow operators to come together

on the boundary by cutting out the regions |7 — 7/| < ¢ and taking 6 — 0, we get
0z = —i/dT@T)\ - /dT :a;(2(7))0r2(7) = (Az(m) = Az(r))) -

_ (3.24)

= —i/dT@T)\ - /dT : (ai(z) * A — Axai(z)) 02" - .

Thus, in this regularization scheme, the symmetry transformation must be deformed to
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(taking A — A),
SA; = O;A +iA x A; —iA; % A. (3.25)

This is the gauge invariance of (a U(1)) noncommutative Yang-Mills theory. Note that the
group of noncommutative gauge transformations in the U(1) case is non-abelian. Further,
in the SW limit, one can explicitly compute the three point functions for gauge boson

scattering and find that it is generated by a term in the effective action proportional to,
/ Vdet GG™ G¥' Ty Fyj % Fyj, (3.26)

This is the action of NCYM. One can check that this action exhibits the noncommutative
gauge invariance. Therefore, in the SW limit, we see that if one uses point splitting regu-
larization of the worldsheet theory, the effective action can naturally expressed in terms of
fields which have a noncommutative gauge invariance. However, if we had instead chosen
Pauli-Villars regularization, the gauge symmetry of the effective theory on the brane would
be undeformed. Now, different choices of regulators on the worldsheet differ by coupling
constant redefinitions on the worldsheet. Since coupling constants on the worldsheet cor-
respond to spacetime fields, this means that the commutative and noncommutative gauge
theory descriptions must be related by a field redefintion. This field redefinition is the
Seiberg-Witten Map.

3.1.3 Formal Properties of the SW Map

Let us analyze more carefully the properties such a field redefinition must possess.
First note that the physical equivalence of the two descriptions only requires that the
physical configuration spaces of the commutative and noncommutative theory coincide. In
particular, this means that one only needs to have an equivalence (at least locally) betweent
the spaces of gauge orbits of the two theories. Thus, the Seiberg-Witten map must be a
field redefinition that transforms commutative gauge fields a; to commutative ones A; and
maintains gauge equivalence. So, if two field configurations were gauge equivalent in one

picture, they must map to gauge equivalent configurations in the other. But the gauge



3.1. GENERAL REVIEW OF NCSYM IN STRING THEORY 58

groups are not isomorphic. Thus, the map cannot be of the form A;(a;), with infinitessimal
commutative gauge transformations mapped to noncommutative ones A()). So, we allow

A(), a;), and demand the following gauge equivalence condition holds,
A(a) + a0 A = Ala + 6ra), (3.27)

where we assume that X is infinitessimal and expand A(a) = a+ A'(a), A(a, ) = A+A'(a, \)
where A’ and A’ are taken to be power series in . One can expand the above condition
order by order in #% and attempt to look for solutions perturbatively in 6. Seiberg and

Witten found that the following expressions,
44(a) = a; — 36" ax, das + fi} + O(F°), (3.28)
Ava) = A+ ioij{aix, aj} + 0(6%), (3.29)
satisfy the above condition to first order. However, as was first noted by Asakawa et al.

in [71], this solution is not unique. The Seiberg-Witten map contains ambiguities, even to

first order. In particular, one can add to A
AW = —2i09[9; ), a;), (3.30)

to find another solution to first order. Further, Seiberg and Witten solved the map explicitly
for the case of constant field strength, and found
1
F =
14 f6

which is singular when f = —@~!'. That is, when the magnetic field due to the gauge

s (3.31)

field and the B field cancel, the noncommutative description fails. This is not surprising
as in this case, both can be gauged away to zero. However, it does suggest that the map
should not be expected to exist globally, and should only be sensible in a systematic long
wavelength expansion.

Nevertheless, it is worthwhile attempting to understand the global mathematical struc-

ture of this map more formally.?2. Let G and Gy be the ordinary and deformed infinite

2The following considerations are very similar to arguments in [65].
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dimensional groups of gauge transformations, and A the affine space of connection one

forms. Globally, the SW map should be a pair of (possibly singular) maps
Ag:.A—).A, Ua:AXQ—)Qa (3.32)

which descends to an “isomorphism”, A/G ~ A/Gy. This suggests a global definition of the
SW map. For g,¢' € G, define

gla) =g 'ag + g~ 'dg. (3.33)
We propose that a SW map obeys,
1. Ag(g(a)) = Up(a,g)~" * Ag(a) x Uy(a, g) + Ug(a, )~ x dUs(a, g)
2. Up((99')(a), 99') = Us(g'(a), 9) x Ug(a, g')
3. Up(g~'(a),9) = Up(a,g~") 7"

4. Up((g'g")(a),g) x Up(a,g'g") = Up(g" (a),99") * Up(a, h)

The star products above are meant to denote the deformed group multiplication law (both
a * and group multiplication). As we noted above, the map is far from unique. One should
get an equivalent map by first applying a fixed gauge transformation to a and then applying
the SW map. More precisely, for some h € G, consider U’(a, g) = Ug(h *ah+h 'dh,g) and
A'(a) = Ag(h~tah + h~'dh). One can show that if A and U satisfy the above conditions
then so do A’ and U’. Along the same lines, one is also free to add to a any global adjoint
valued two form before applying the SW map. These can be constructed using covariant
derivatives, 8’s and F’s, thereby making use of the affine structure of A. These translate
to the aforementioned ambiguities in the infinitessimal version of the map which were the
original motivation the cohomological approach which follows.®> As was pointed out by
A. Weinstein, the conditions outlined above are precisely those of a groupoid morphism

between action groupoids associated with action of the commutative and noncommutative

3The infinitessimal version of these ambiguities were first noted by R. Stora and examined in detail in
[75].
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gauge transformations on the space of connections. Further, Weinstein was able to show
that the infinitessimal version of this transformation could be understood as a Lie algebroid
morphism. Mathematically, the aim of this work is to find explicit expressions for this Lie

algebroid morphism.

3.2 The Wess Formalism for the SW Map

In this section, we review the formalism developed in [63], which provides an alternative
method for obtaining an expression for the SW map. To recap, recall that the condition
which defines the SW map [59] was obtained by the requirement that the infinitesimal gauge
transformations of the commutative gauge field a; under A and the noncommutative gauge

field A; under A,

(5)\0,,' = 6ZA - i[ai, A], (334)
be related by,
A; 4+ 0pA; :Ai(aj—l—é)‘aj,---). (3.36)

Now, in order to satisfy (3.36) the noncommutative gauge field and gauge parameter must

have the following functional dependence.

A; = Ai(a, 0a,0%a,---)

(3.37)
A=A(NON - ,a,0a,---),

where the dots indicate higher derivatives. As we indicated in the last section, a SW map is
not uniquely defined by condition (3.36). The ambiguities that arise [71] will be discussed
shortly.

The condition (3.36) yields a simultaneous equation for A; and A. For the constant
0 case, explicit solutions of the Seiberg-Witten map have been found by various authors
up to second order in 0 [72, 63]. The solutions were found by writing the map as a linear

combination of all possible terms allowed by index structure and dimensional constraints
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and then determining the coefficients by plugging this expression into the SW equation.
The method we will describe in the rest of the paper provides a more systematic procedure
for solving the SW map. For the special case of a U(1) gauge group, an exact solution in
terms of the Kontsevich formality map is given in [64], while [66, 69, 68, 69] present an
inverse of the SW map to all orders in 6.

An alternative characterization of the Seiberg-Witten map can be obtained following
[63]. In the commutative gauge theory, one may consider a field 9 in the fundamental
representation of the gauge group. If we assume that the SW map can be extended to
include such fields, then there will be a field ¥ in the noncommutative theory with the

following functional dependence
U =U(, 09, ,a,0a, ), (3.38)
and with the corresponding infinitesimal gauge transformation
P =iy (3.39)
oAV =iAx 0. (3.40)
An alternative to the SW condition (3.36) can now be given by
U+ 000 =V (9) + 0\, -+ ,a; + 0raj,---). (3.41)
More compactly, one writes
oY (P, a4, ) = 0a¥(h, a5, ). (3.42)

The dependence of A on « is shown explicitly on the left hand side, and on the right hand
side d), acts as a derivation on the function ¥, with an action on the variables 9 and a; given
by (3.39) and (3.34) respectively. Next, one considers the commutator of two infinitesimal
gauge transformations

[6ay,0a, ] U = [0x,6,] 0. (3.43)
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Since [0x, 6y] = 6_4[x,], the right hand side of (3.43) can be rewritten as

0¥ = 0n_ip ) ¥ = hipngy ¥ W = Ay + 0.

—i[A9]

The last equality follows from the fact that A is linear in the ordinary gauge parameter,

which is infinitesimal. As for the left hand side,
[(5/\/\, (5/\7] U = da, (Z'A,y *U) — 5A7 (1A * T)

=1 ((5,\Afy - 67A)\) * U+ [A)\ x A,y] * U,

Equating the two expressions and dropping ¥ yields
((S)\A,y — 57A/\) —1 [A/\ x A,y] + ’I:A[/\’,y] =0. (344)

An advantage of this formulation is that (3.44) is an equation in A only, whereas (3.36) must
be solved simultaneously in A and A;. If (3.44) is solved, (3.35) then yields an equation for
A; and (3.40) for V.

3.3 The Ghost Field and the Coboundary Operator

Inspired by the simplicity of the BRST formulation of gauge theories, we rewrite equa-
tions (3.35), (3.40) and (3.44) in terms of a ghost field in order to make explicit an un-
derlying cohomological structure. That is, we will redefine the gauge parameter A as an
anti-commuting, Grassmannian field which is enveloping algebra valued. Define a ghost
number by assigning ghost number one to A and zero to a; and 9. The ghost number in-
troduces a Z3 grading, with even quantities commuting and odd quantities anticommuting.
In our formalism, the gauge transformations (3.34) and (3.39) are replaced by the following

BRST transformations:
A = i

a; = A —ila;, A (3.45)
Sxih = i) .
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In the U(1) case the introduction of a ghost was first considered in [73]. We also take 6, to

commute with the partial derivatives,
[0x,0i]=0. (3.46)
The operator §y has ghost number one and obeys a graded Leibniz rule

Sx(fif2) = (Onf1) fo + (=1) 290D £ (6, fo) (3.47)

where deg(f) gives the ghost number of the expression f. One can readily check that ¢y is

nilpotent on the fields a;, 9 and A and therefore, as a consequence of (3.47), we have
65=0. (3.48)

Following the procedure outlined in the previous section, we characterize the SW map as
follows. We introduce a matter field ¥ (v, 0, - ,a,0a,---) and an odd gauge parameter
AN, 0N, -+ ,a,0a,---) corresponding to 9 and A in the commutative theory. A is linear in
the infinitesimal parameter A and hence has ghost number one. As before, we require that

the SW map respect gauge invariance.
AT =iA*x T = §,0. (3.49)
The consistency condition (3.43) now takes the form
52U =50 =0, (3.50)
and again it yields an equation in A only.
0=03T =0pA(iA*xT) = i0p\A% T + AxAx T

Since ¥ is arbitrary we obtain
OA\A = iA % A. (3.51)

Once the solution of (3.51) is known, one can solve the following equations for ¥ and the
gauge field.
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It is natural to expand A and A; as power series in the deformation parameter 8. We

indicate the order in § by an upper index in parentheses
A=3 A =)\ + >, A?)
Ai=300 Az('n) =ai+) Az(n) .

Note that the zeroth order terms are determined by requiring that the SW map reduce to

(3.53)

the identity as 6 goes to zero. Using this expansion we can rewrite equations (3.51) and
(3.52) as
S AM — i{)\,A(")} =M™
S AM — i, A =

2

(3.54)

where, in the first equation, M (") collects all terms of order n which do not contain A and

) collects terms not involving A™ . We refer to the left hand side of each

similarly Ui(" ;
equation as its homogeneous part, and to M and U; as the inhomogeneous terms of (3.54).
Note that M) contains explicit factors of 6, originating from the expansion of the Weyl-
Moyal product (3.2). An expression for the generic M(™ is given in the Appendix. If the
SW map for A is known up to order (n — 1), then M) can be calculated explicitly as a
function of A and a;. On the other hand, U™ depends on both A and A;, the former up
to order n and the latter up to order (n — 1). Still, one can calculate it iteratively as a
function of X and q;.
The structure of the homogeneous parts of equation (3.54) suggests the introduction of
a new operator A.
A oy —i{\,-} on odd quantities (3.55)
dx —i[A,-] on even quantities

In particular, A acts on A and a; as,
AX=—iX?, Aag;=\. (3.56)

As a consequence of its definition, A is an anti-derivation with ghost-number one. It follows
a graded Leibniz rule identical to the one for dy (3.47). Another consequence of the definition
(3.55) is that A is nilpotent

A?=0. (3.57)
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The action of A on expressions involving a; and its derivatives can also be characterized
in geometric terms. Specifically, A differs from d, in that it removes the covariant part of
the gauge transformation. Therefore, A acting on any covariant expression will give zero.
For instance, if one constructs the field-strength, Fj; = 0;a; — 0;a; — i[a;, a;], one finds by
explicit calculation

AFy; = 0. (3.58)

It can also be checked that the covariant derivative, D; = 0; — i[a;, -] commutes with A,
[A,D;] =0. (3.59)
In terms of A the equations (3.54) take the form

AA®) — pr(n)

(3.60)
AAm =y

In the next section we will provide a method to solve these equations. Also note that since
A? = 0, it must be true that
AM®) =
AU™M =0 .
Indeed one should verify that (3.61) holds order by order. If (3.61) did not hold, this would

signal an inconsistency in the SW map.

(3.61)

3.4 The Homotopy Operator

For simplicity, we begin by considering in detail the SW Map for the case of the gauge
parameter A. Much of what we say actually applies to the other cases as well with minor
modifications. In the previous section, we have seen that order by order in an expansion in
0, the SW map has the form:

AN = M), (3.62)

where M) depends only on A® with i < n. Clearly, if A could somehow be inverted,

we could solve for A, But A is obviously not invertible, as A2 = 0. In particular, the
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solutions of (3.62) are not unique, as if A is a solution at order 7 in theta, then
A = AR 4 AS®) (3.63)

is also a solution for any S (")(ai, 0;a;, ...) of ghost number 0 and order n in theta*. That
is, A acts like a coboundary operator in a cohomology theory, and the solutions that we
are looking for are actually cohomology classes of solutions, unique only up to the addition
of A-exact terms. Here, the ghost number plays a role analogous to that of the degree
of a differential form (or (co)chain) in DeRham cohomology, and polynomials (of a;, 0;
and v) of a given ghost number are the analogues of the chains themselves. Thus, we
can think of the algebra of all such polynomomials as the analogue of a (co)chain complex
(e.g. compare to the grassmannian algebra of differential forms). Further, the consistency
condition, AM() =0 is just the statement the M) is necessarily a (co)cycle.

The formal existence of the SW Map is then equivalent to the statement that the cycle
M®™) is actually A-exact for all n. Since we know that A% = 0, this fact would follow as
a corollary of the stronger statement that there is no non-trivial A cohomology in ghost
number two (that there do not exist any A-closed, order n polynomials with ghost number
two which are not also A-exact). To prove this stronger claim, we could proceed as follows.
Suppose that we could construct an operator K (known as a chain homotopy operator 5 )

acting on chains of ghost number two such that
KA+ AK =1. (3.64)

Clearly, K must reduce ghost number by one, and therefore must be odd. Consider its

action on a cycle M, (so AM = 0)

(KA + AK)M = AKM = M. (3.65)

4These are precisely the ambiguities in the SW map that were first discussed in [71], where our operator
A was called &'.

5The name comes from homology theory: Suppose 8 is a (co)boundary operator and g and h are (co)chain
maps (maps between two chain complexes which commute with the boundary operator, gd = dg). If we can
find a K s.t. KO+ 0K = g— h, then if a is a (co)cycle, g(a) — h(a) = 0K(a), so g and h induce the same
maps on homology. In simplicial homology, this holds if the chain maps are induced by homotopic maps
between the underlying topological spaces. In our case, we take g = 1, f = 0, so the existence of K implies
that any cycle « is exact, as g(a) = @ = 0K(a), and thus the cohomology is trivial.



3.4. THE HOMOTOPY OPERATOR 67

Therefore, M = AA, with A = KM, which not only shows that M is exact, but also
computes explicitly a solution to the SW map. We note that this method of solution is
nearly identical to the method used by Stora and Zumino [70] to solve the Wess-Zumino
consistency conditions for non-Abelian anomalies. In fact, it was the parallels between these
problems that motivated our current approach.

We now proceed to construct K. First we notice that M) depends on A only through
its derivative J;v, as one can see by looking at the explicit expressions in the Appendix.

The same is true for Ui(") since it depends on X only through A. It is convenient to define
bi =0\, (3.66)

so that M and U; can all be expressed as functions of a;, b; and their derivatives only.
Further, as A commutes with covariant derivatives (D; = 0; — i[a;,-]), it is convenient to
rewrite M (™ by replacing all ordinary derivatives with covariant derivatives. After these
replacements, we may naively attempt to consider M (™ an element of the noncommutative
algebra generated freely by the a; and b; under the free action of the covariant derivatives
D,. The action of A on the generators of this algebra takes a very simple form (where

D™ = Dy, --- Dy,),

However, we note the action of the covariant derivatives on a; and b; is not actually free.
In particular, if we define

Fij = Dja; — Dja; + i[a;, ajl, (3.68)
and then consider,
AFjj = A(Dia; — Dja; + ilai, a;]) = Dibj — Djb; +i[bs, by, (3.69)

we see that the right hand side of this expression would be a non-vanishing element of the
free algebra generated by the a;, b;, and D;, while according to (3.58) it actually must vanish.

The origin of these relations or constraints can be traced to the fact that the commutation
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of ordinary partial derivatives,
Biaj — Bjai =0, Bibj — 6jbi =0, (3.70)

is not manifest in the algebra, since we’ve defined b; = 0;v and rewritten the algebra in
terms of covariant derivatives. Note that when written in terms of covariant derivatives,
(3.70) becomes (3.69).

It will be much easier to construct the homotopy operator if we can solve the constraints
while still using variables in which the action of A is still simple.® Now, we claim that all the
constraints that arise in this algebra arise as consequences of (3.70). First note that A and a;,
under the action of J; freely generate a noncommutative algebra with the only constraints
being the commutation of the partial derivatives. Replacing 9; A with b; is entirely analogous
to replacing a gauge potential with its field strength. Of course, the only consequence of
this replacement is that the field strength must be constrained to obey its Bianchi identity,
which is precisely 0;b; — 0jb; = 0. Now, expressing elements of this algebra in terms of
covariant derivatives is just a linear change of basis of generators, replacing the exterior
derivation 9; with a combination of exterior and interior derivation D; = 9; — i[a;,-] and
therefore cannot add any new constraints. In particular, we only have the two constraints
acting on the original algebra, and can just translat them into constraints involving the D;.

With Fj; defined by (3.68), the constraints (3.70) just translate into,

(8:0; — 0;0:)(-) = [Fij, -] —i[Dy, Dj](-) = 0, (3.71)
{*)ibj — 8jbi = AFZ'J- =0. (3.72)

Note that both constraints can be written in terms of antisymmetric combinations of co-
variant derivatives and fields. This suggests that symmetric combinations of covariant
derivatives and fields should be treated differently from antisymmetric combinations.

In particular, consider an algebra generated by (DP)F;;, treated here as independent

5In fact, the following construction has been made completely obsolete, as a much simpler method exists
for obtaining the solution to all orders that only requires that a homotopy operator be defined to first order
[76]. Nevertheless, we include the following for completeness.
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variables, along with the totally symmetrized variables,

1
(Dha)s = 2 > ity Diguy gy (3.73)
g
1
(D"a)s = — > " Diy Dignr iy s (3.74)
g
where the sum is over all permutations o of 1,...,n. Clearly, we can express any co-

chain in terms of these variables by rewriting expressions in terms of symmetric and anti-
symmetric parts (we make this more explicit at the end of this section, for pedagogical
clarity). The question is to what extent such an expression is unique. Note that we only
allow covariant derivatives to act on the field strengths. Since all the relations in our original
algebra involved commutators of derivatives, and we do not allow freely acting covariant
derivatives on the symmetrized variables, we do not expect any relations involving these
totally symmetrized variables. However, we certainly do expect relations involving the freely

acting covariant derivatives acting on the field strength, such as,

Formally, this means that the ideal of relations is generated by linear combinations of
generators of the subalgebra (DP)F;;. As we will discuss presently, since all the operators
we will define can be taken to commute with these freely acting covariant derivatives and
field strengths, this will not matter.

First note that since A is a linear operator and commutes with all covariant derivatives,

it annihilates the (DP)F;; and acts very simply on the (D"a)s and (D™b)s,
A(D"a); = (D"b)s,
A(D™b)s =0, (3.76)
A(DP)F;; = 0.

The last relation can also be interpreted as stating that A commutes with all the (DP)Fy;,

and therefore, the ideal of relations commutes with A as well. This means that we can

proceed as if in a free algebra. In a free algebra, a homotopy operator is fairly easy to
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construct. The primary difficulty is that since K is to invert an operator which acts like a
graded derivation, it cannot itself obey the Leibniz rule. We can instead proceed by defining
an infinitesimal form of the operator K, which does. In particular, to define K, we first

define two operators £ and ¢ such that
AL+ LA =6, (3.77)
and then an operator T' (a kind of integration operator) such that
TSM =M, T(EM)=KM. (3.78)

We think of the operator ¢ as an infinitesimal variation of (D"a), and (D"b)s which can be

integrated to the identity. It is also defined to annihilate the (DP)F;;,

5((D")Fyj) = 0. (3.79)
The action of £ is defined by

£(D"a)s = 0,

£(D™b)s = (D™a)s, (3.80)

¢(DP),Fyj = 0.

Finally, the integration operator T' acting on any expression is implemented via the following

procedure:

1. Choose the fields to be linearly dependent on ¢ and § to be the infinitesimal variation
with respect to t,
d(D™a)s — (D"a),dt,
0(D™b)s — (D™b)dt,
§(DP)sFij — 0,
(D™a)s — t(D"a)s,
(D™b)s — t(D™b)s,
(DP)sFij — (DP)sFij.

(3.81)
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That is, we transform any expression,

N((Dna)s, (Dmb)s’a 5(Dna)3a 5(Dmb)37 (Dp)sFij) -

(3.82)
N(t(D"a)s,t(D™b)s, (D"a)sdt, (D™b)sdt, (D?)sFij).
2. Integrate from ¢t = 0 to ¢ = 1. Thus,
TN((D"a)s,(D™b)s,6(D"a)s, 6(D™b)s, (DP)Fj5) =
(3.83)

/ N (D a)s, 1(D™b),, (D"a)sdt, (D™b)sdt, (DP)s i)
0

We now show by induction that these definitions do in fact yield a homotopy operator K.
It is easy to see that AL+ £A = ¢ holds when acting on (D™a)s or (D™b), alone. Suppose
then that the equation holds when acting on two monomials f and g of order less than or

equal to 7 in (D"a)s and (D™b)s. Then it follows that
(AL+LA)(fg) = ((AL+LA)f)g + f(AL+LA)g , (3.84)

where all the cross terms have canceled out. By the induction hypothesis this expression
is equal to (6f)g + fdg, which is just 6(fg). Thus AL+ £A = ¢ holds on any monomial of
degree greater than zero. Since this operator is distributive, (3.77) holds for any element of
the algebra.

Finally, as promised, we show in more detail how we can actually write the co-chain M
in the form suggested above. We begin with an expression for M as found by expanding
the star product.

M® = M®) (a, (8*)a, (8")sv) , (3.85)

where we choose to explicitly write the derivatives in symmetric form. By replacing 0(-) —

D(-) +i[a,-], and Ov — b the expression takes the form
M®™ =M™ (q,b, (D¥),a, (D'b),) . (3.86)

The difference (D¥a); — D*a contains terms that are proportional to the antisymmetric

parts of DD or Da. But using the constraints we can make the following substitutions

[DZ,D]]() — —’L'[Fij, ] y Diaj — Djai — Fz'j — i[ai,aj] . (3.87)
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This must be done recursively since the commutator term involving a’s above may again
be acted on by D’s. But at each step, the number of possible D’s acting on a is reduced by

one. After carrying out this procedure M will be written in terms of the desired variables.

3.5 Some Calculations

In this final section, we use the formalism we have developed to compute some low order
terms of the SW map. The explicit form of the expansions of the Weyl-Moyal product used
in this sections are included at the end of the section for completeness.

We focus mainly on solving for the gauge parameter A. At the zeroth order, if we

expand dyA = 1A x A we find
S = iv?, (3.88)
which is just the BRST transformation of v (3.45). At first order, we have
AN = —%aijb,-bj, (3.89)
while at the second order we obtain
AA®) = - L4605 — S0, 0]+ iADAC) (3.90)
A solution of (3.89) has been found in [59] and is given by
AW = 26 b a5} (3.91)

We can reproduce this solution immediately by applying K to the expression M 1) =
—%Hijbibj. There are no problems at this level, since there are not enough derivatives
for the constraints to show up. As explained in the previous section we proceed in two
steps. We first apply £

(MW = —%9”‘ (8aib; — bidaj) (3.92)
then T to find

.. 1 ..
K(M(l)) = %HW(biaj + ajbi) / dtt = igzj{bi, G,j} . (3.93)
0
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The ambiguity in the first order solution as determined in [71] is proportional to
AW = —2i0'[b;, a;] . (3.94)

According to the previous discussion the ambiguity amounts to an exact cocycle, hence is

of the form:

AD = A5 (3.95)
where SO can be computed to be
S = KAW = —i¥[a;, a ] . (3.96)

Solutions at the second order have been found by various authors. In [63] the following

solution is presented, *
AD = 3%9%’9’0“( — (b, {agsilaj, ai] + 40,a;} ) — i{a;, {as, [bi, ax]} )
+2[[bi, ax] + i0ibx, ja1] + 2i[[az, ar], [b;, ak]D , (3.97)
while in [72] the following solution is found,
O = 0968 (— (b, {ag, ifag, ] + 40105} } — i{ay, (o, [ o))
+2{[b, as] —I—iaibk,ajal]) . (3.98)

According to our previous observation the difference between these two expressions must

be of the form AS®). In fact, we find
A(Q) o A,(Q) = %Hmekl([ataka [bla a]] + [ala b]]:| B i[[aka bZ]7 [al7 a]]]) = AS(2)7 (399)

with S given by
1 ..
5(2) = EG”H“ [Biak, [al, G,j” - (3'100)

This expression for $? can be obtained in the following way.

"The expression for A® found in [63] appears to contain a misprint. The correct formula (3.97) was in
fact given to us personally by J. Wess.
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Symmetrize A — A’ @ with respect to all derivatives and then use the substitu-
tion (3.87)
Fyj — Djaj — Dja; + i[a;, aj] = 0, (3.101)

to introduce F' rather than antisymmetric derivatives and fields.
@ _ar@ _ L pijgh : :
A® A = g ([P + ilas, anl, [n, 1) + i[[aw, bil, [og, ]
1 ..
= Eomgkl[ﬂk, [bl,a’j]] : (3102)

By applying K we immediately get

1

@ = K(A® - A’(2))
32

GZJOM[Eka [a’la a]]] (3103)
By substituting back the expression for Fj;, and noting that
64 gt [[ak, a;),[a;, al]] =0 (3.104)

we again recover (3.100). By following the same procedure we can compute directly a

solution of (3.90) at the second order.

A" = —%aij {ai, %DjA“) + %[aj,/\ﬁ)]} + 0”'0“( - %[Dmk,Djbl]
+[[as, ax], 21—4Djbl + 31—'2[% bil] + i [Diag, [a;, bi]]
+é (ai(%Djak — %Dkaj + %[aj, ax]) by (3.105)
—bi(éDjak - %Dkaj + %[ajvak])al

-I-{%(Diak - Dkai) + %[ai,ak],{al,bj}})) .

As expected, the difference between our solution A”®) (3.105) and the solution A (3.97)

is again of the form AS’ @ (up to a term which vanishes by the constraint).

. 1
A@ _A@ _ giighl [A<ﬁ([% [Diak, ai]] +2(Diagaja; + alajDiak)
1

+glaia, AFj,]] . (3.106)
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A similar technique can be followed for the potential A;. Moreover, if A®™ is changed by

an amount AS()
A 5 A L ASM) (3.107)

then the corresponding change in the potential is
AM 5 A 4 pst (3.108)

This follows from the fact that the equation of order n for the gauge field is always of the

form

AA™ = DA™ 4 ... (3.109)
Notice that (3.108) is a consequence of the fact that the coboundary operator A commutes
with the covariant derivative D;.
3.5.1 Explicit expansions of Weyl-Moyal product

We collect here some useful expressions arising from the expansion of the Weyl-Moyal

product. First, for simplicity, we will define

or, =0, ---0;, (3.110)
We will expand out x-products using Moyal’s formula:
fl@)xglz) = "' %% f(y)g(2)ly=r=a
1 (a\" Co
= a(5) o oen s @0 - Biste)
n=0
=1 (i\"
= > o (§> o o; f(2)d1,9(x) - (3.112)

n=0



3.5. SOME CALCULATIONS 76

Inserting this expansion into (3.51) and requiring that the equation is satisfied order by

order in 6, we find the following expression

SYA™ {A(”),v} — AA(™) (3.113)

= i i\"P
-2 (m (§> 0'vrlnr {0y, , Ap, 0y, v}
p=1

3 -\ p—1 n—p
? 1
+m (5) glo—1Jp-1 Z afplAanplAnqp+l)

q=1

+2(3) o @no) @10

Up to the second order this equation reads

0 Sy =iv? (3.114)
1t AN = —%eijb,-bj (3.115)
ond . AN = —%eiﬁ'e’“laibkajbl - %0@'9'[@,8]-1\(1)] +iAMAD (3.116)

Analogously the equation (3.52) for the gauge potential A;

SxA; = O;A — i [A; * A] (3.117)

reads
oh . AAlY =y, (3.118)
1ot AAWY = DA - %Hij{bk, Ba;} (3.119)

27 AAP = DA i[AD, AM] - %le{bk,BzAgl)}

—%Hkl{BkA(l),alai} - %9’cl9mn[akbm, Oynas] - (3.120)
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Chapter 4

Dipole Field Theories and Plane

Wave Spacetimes

In the previous chapters, we have restricted ourselves to deformed geometries associated
with spaces of Euclidean signature. In this chapter and the next, we move to interesting
modifications of geometry which have to do with the behavior of string theory in back-
grounds with non-trivial Lorentzian metrics. We begin, in this chapter, with an example
which is uniquely interesting because of its simplicity, and is the result of work done in col-
laboration with Ori Ganor [16]. We will focus on the D-brane probes of certain particularly
tractable plane-wave spacetimes. We argue that the effective field theory on D3-branes in
a plane-wave background with 3-form flux is a nonlocal deformation of Yang-Mills theory.
In the case of NSNS flux, it is a dipole field theory with lightlike dipole vectors. For an
RR 3-form flux the dipole theory is strongly coupled. We propose a weakly coupled S-dual
description for it. The S-dual description is local at any finite order in string perturbation

theory but becomes nonlocal when all perturbation theory orders are summed together.
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4.1 Introduction

The restrictions imposed by the conditions of global Lorentz invariance and locality
play central roles in our understanding of the formal properties of quantum field theories.
However, as we have seen in the last chapter, neither of these conditions appears to be
fundamental in string theory. Thus, it is interesting to consider simple situations where they
are relaxed. In particular, we will examine the properties of D-branes in certain plane-wave
backgrounds with strong 3-form fields. As we will show in detail, the low energy effective
theory describing the fluctuations of these D-branes is a non-local, Lorentz violating dipole
theory [77]-[79].

Typical interaction terms in the Lagrangian of this field theory are of the form,
[ 0000+ Lgsto 4 Tat ) (1)

where ¢; are fields and the L; are fixed world-volume vectors. Roughly speaking, the
non-locally coupled fields ¢; correspond to stretched open strings with end-points that are
separated by L; and with angular momentum along planes transverse to the brane. These
strings are stabilized by the presence of strong 3-form fluxes with legs aligned along the
dipole vectors as well as the plane of rotation [78].

An exciting application of string theory with strong 3-form field strengths is the AdSs
|/ CFT; correspondence [80]. Unfortunately, progress had been limited by the fact that
string theory in AdS backgrounds with RR field strengths are difficult to analyze exactly.
However, the authors of [81] have shown that a particularly tractable limit of the AdS/CFT
correspondence can be obtained by taking the Penrose limit of type-IIB string theory on
AdSs x S° to obtain a plane-wave background. They were able to precisely match the
properties of a certain subsector of N' =4 Super-Yang-Mills CFT (operators with large
R-charge) with the exact results of [82]-[84] for strings in plane-wave backgrounds.

Similarly, one can consider the Penrose limits of AdSs3 x S3 x T* [85, 86]. As IIB has
two three-form field strengths, H' (NSNS) and H? (RR), one finds a pair of models which
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are related by S-duality. The Penrose limit of the theory with H' flux is

ds? = datdz + paizt(dzT)? — do®da® — da'dst, (4.2)
H' = —pdztA(dzbAdz™ + dz®Adz?), (4.3)
e = g, (4.4)

where ds? is the interval in string frame, z+ = 29 & z!, the 2% are coordinates on T* with

a=2,....,5and 1 =6,...,9. The Penrose limit of the S-dual configuration is

ds? = datdz + prts(dz)? — da®dz® — da'ds?, (4.5)

H? = pdztA(dzSAdz™ + dzBAda®), (4.6)
1

e = o (4.7)

Exact results for the spectrum of both models were obtained in [85, 86]. Further, open
strings and D-branes in these and other plane-wave backgrounds have been studied in [87]-
[99].

In this chapter we will study the interactions of the low energy effective theory of the
D-brane excitations. We will show that N D3-brane probes of the plane-wave background
(4.2)-(4.4) are exactly described at low energies by a nonlocal U(N) dipole gauge theory
[77] with a lightlike dipole vector L proportional to p.

A more complicated problem is the description of N D3-brane probes of the pp-wave
background (4.5)-(4.7), which has RR flux. It is related to the S-dual description of the
lightlike dipole theory. We attack this problem by first studying the S-dual description of a
U(1) lightlike dipole theory and then guessing the generalization of that result to a U(N)
gauge group. We find that in any finite order of string perturbation theory the interactions
of the D3-brane probes of the pp-wave background (4.5)-(4.7) are local. Yet our result
suggests that summing the local interactions to all orders in perturbation theory exhibits
an intrinsic nonlocality with a characteristic length proportional to the string coupling
constant, gs.

The chapter is organized as follows. In section 4.2 we review the definition and salient

features of dipole theories. In section 4.3 we identify the lightlike dipole theory as the low
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energy description of D3-branes in the pp-wave background (4.2)-(4.4). In section 4.4 we
analyze the S-dual of the U (1) lightlike dipole theories and conjecture an extension of the

result to U(NN), We conclude in section 4.5 with a list of possible extensions of our work.

4.2 Definition of Dipole Theories

The dipole field theories that we will work with in this chapter are nonlocal field theories

that are deformations of N' =4 SYM. The Lagrangian of N' =4 SYM is

6 4
1 1 1 —a
b = el dmum LS00 e 4 o |
9 I=1 a=1
1 2 —a—f
bt S0 8 S ek + ey ST |
9 I<J I,a,b I,a,b
D" = 9,9 +i[4,, @] (4.8)

Here & (I = 1...6) are adjoint scalar fields of U(N) which transform as a vector of the R-
symmetry group Spin(6). The ¢% (a = 1...4) are adjoint Weyl fermions in the 4 of Spin(6).
Their complex conjugate fields Eaa transform in the complex conjugate representation 4 of
Spin(6). v/ are the Clebsch-Gordan coefficients of Spin(6) and 0“4 are Pauli matrices.

The dipole theories are obtained from AN =4 SYM by the following steps (see [79] for

more details):
1. Define the complex linear combinations of the 6 scalar fields of (4.8):
Zy = Pop_1 + 1Py, Zp = Bop_1 — iPoy, k=1,2,3,
and assign a constant space-time 4-vector Ek to each scalar field Z;.

2. Modify the covariant derivatives of the scalar fields so that D,Z; at the space-time

point z will be:

Dqu(l') = 8qu(.’E) — ZAM(.’E — %I_;k)Zk(a:) + 12} (:II)AN(.’L‘ + %I_;k) (49)
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Note that the fields Z; are N x N matrices in the adjoint representation of U(N).
Thus, equation (4.9) implies that the quanta of the fields Z are dipoles whose ends

are at ¢ + %I_;k The gauge transformation of the scalar fields is
1 1- 1=
Zy(x) = Q7 (z = 5 L) Zi (x) U + 5 L),
where Q(z) € U(N) is the gauge group element.

3. In order to preserve U(N) gauge invariance we have to modify the definition of the

commutators in (4.8) to:

1> 1= 1- 1-
[Zk, Zl](w) — Zk(.’L‘ — §Ll)Zl($ + ELk) — Zl(.’I; — §Lk)Zk(.’L‘ + ELl)'

4. We also need to modify the interactions of the fermions with the scalars so as to be
gauge invariant. This can be done by assigning to the fermions their own dipole-
vectors. To find the appropriate assignment we need to correlate the dipole-vector of
the various fields with their Spin(6) = SU(4) R-symmetry charges, as follows. The
parameters I_;k that define the dipole theory can be combined into a single linear map
T : su(4) — R*! from the Lie algebra of the R-symmetry group to a spacetime 4-
vector. Using the inner product on su(4), T can be represented as an su(4)-valued
spacetime 4-vector. In the representation 6 of su(4) we can take T to be

0)

0 I 0 0

-L;y 0 0 0

(4.10)

0
0
0
0

oS o o ©

Now we can define the interactions of the fermions. We need to write Y in the

representation 4 of su(4) and find a basis of this representation where T is diagonal.
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It will then have the following form:

X 0 0 0
ral 0 X2 9 0 |
0 0 X3 0
0 0 0 X
with the definitions
o= %(51 + Ly + L3),
fo = o(Bn- LIy,
5\'3 = %(_El + Ez - E?,),
% o= %(—E1 Iyt ). (4.11)

The Weyl fermions 9% (a = 1...4) of (4.8), which are in the 4 of su(4), should be
assigned the dipole vectors 2@ and their complex conjugate fields should be assigned
(—X“). To get a gauge invariant Lagrangian we need to replace all the commutators

of a scalar and a fermion with:
. 1 1. 1= 1
(21 ¥ ) (2) = Zilz = GAa)P(@ + SLi) = Pl = S L) Z(z + FAa)-

5. Since the gauge bosons have vanishing dipole vectors, preserving any supersymmetry
requires that some of the fermions have vanishing dipole vectors [79]. In particular,

to preserve N’ = 2 we may choose Xl = —Xg = EQ = Eg =L and /_\'3 = X4 = I_;l =0.

These rules can be recast as a redefinition of the product of two fields. The modified product
of any two fields Z1(z),E2(x) (scalar, fermionic or gauge) is defined in a way somewhat

reminiscent of noncommutative geometry [100, 101]:

~ 8 . ~ Py
(T“)Rl)a*%(T“’Rz)m (

(E1 % Ea) () = €2 E1(y)E2(2)) ly=r=2; (4.12)

where R; (i = 1,2) is the (su(4)-valued) R-symmetry charge operator acting on Z; and (-, )
is the Killing form on su(4) (see [79] for more details).
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Special cases of dipole theories have been discussed in [102, 103] and various aspects of

the theories have been explored in [104]-[109].

Lightlike dipole-vectors

Define the linear vector space W C R®! to be the image of the map T : su(4) — R>!
defined in (4.10). In terms of the fundamental dipole vectors that were introduced in (4.10):

W = Span{l_';l, EQ, I_;g}
We will define the dipole theory to be lightlike if W is 1-dimensional and null, i.e.
Li-L;=0, i,j=1,23.

As we shall see in section 4.4, lightlike dipole theories are easier to analyze than the generic
dipole theories. This is similar to Yang-Mills theory on a noncommutative space that
simplifies when the noncommutativity parameter is lightlike [110]. Lightlike deformation
parameters have also been used in the context of the noncommutative (2,0)-theory [111]-

[113].

4.3 Lightlike Dipole Theories and NSNS Plane-Waves

In this section we will show that the low energy effective actions describing appropriately
oriented D3-branes in a plane-wave background with a strong lightlike NSNS 3-form flux
are lightlike dipole theories. The orientation of the D3-branes must be such that, in the
notation of (4.2)-(4.4), the +, — directions are longitudinal and the z* (i = 6...9) directions

are transverse.

4.3.1 Geometric engineering of dipole-theories

To obtain a lightlike dipole theory we consider a background in which probe D3 branes

have a small timelike dipole vector and then we perform a large boost. For simplicity,
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assume that all the dipole vectors which are encoded in T are in the z! direction. In this
case T reduces to a single element in the Lie algebra su(4) which, in the representation 6,
we can write as a 6 X 6 antisymmetric matrix 2ra/Q.

As was shown in [79], a U(N) dipole theory with dipole vectors along z' described by

2ma/() arises as the low-energy effective action of N D3-brane probes in the string theory

background,
1 dz' Qx)?
ds? = dt? — —————(dz")? — (dz?)? — (dz®)? — dZ"dZ + _(dE QT)"
1+ZTQTQTF 1+27TQTQT
=T A =
p - L 4EQF 1 ey L
214+ 37TQTQ7 1+7TQTQ7F
where Z = (z*,...,2%). We can obtain a theory with a lightlike dipole vector by infinitely

boosting this background along z'. As the dipole vector prior to the boost has a magnitude
set by 2ma/ Q, we must simultaneously scale Q — 0 to obtain a lightlike dipole vector which
has finite components in this limit. Thus, let

1
V1 —v?

=~ +ot'), t=~ +vz'), ~

and take v — 1 while keeping
7Q = Q = finite.
Defining 2+ = ' + !’ we find the background
ds? = datdzr + (@' QTQZ)(dzt)? — (dz?)? — (dz?)? — di"dZ
B = % 7' QENdz T, e® = g,. (4.13)

In order to preserve N' = 2 supersymmetry, we take

00 0 0 0 0

00 0 0 0 0

, 00 0 L~ 0 0
20/ Q = (4.14)

00 L~ 0 0 0

00 0 0 0 L

00 0 0 —L 0
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Concretely, we note that the dipole vectors for the fields in this background are of the form
L= +(L~,—L7,0,0). If we define
I-
= _—— 4.1
N 27ra, 7 ( 5)

we see that this background (4.13) is exactly the NSNS plane-wave of equation (4.2)-(4.4),

ds®* = daxtdz™ + pz'z'(dzT)? — dz®dz® — da'dz?,
H' = —pdrtA(dz®Adz” + dz®Adz?),

e = g, (4.16)

where againa =2,...,5and ¢ =6,...,9.

Note that L~, the characteristic length scale of nonlocality, can be made arbitrarily big
by a coordinate transformation that rescales z+. It is therefore obvious that the excited
open string states decouple from the low energy lightlike dipole theory. Furthermore, since
the lightlike dipole theory is a limit of a dipole theory with spacelike dipole vectors and
since the latter can be constructed as a certain limit of compactified noncommutative N' = 4

Super Yang-Mills theory [77], it follows that the lightlike dipole theory is unitary.

4.3.2 Lightcone string theory in the NSNS background

Using the exact results of [81, 84] (extended by [97] to the open string case) for string
theory in the NSNS plane-wave background (4.16), we will show directly that the open string
interactions are modified by the phases one would expect for a lightlike dipole deformation.

In order to facilitate future comparisons to the RR case, we consider the plane wave

background in the GS formalism. First, we define the complex worldsheet scalar fields
71 = Xg +1X7, Zs = Xg + 1 Xy.

In order to simplify the analysis of the interactions in lightcone gauge, it is conventional
to fix XT = p*r and additionally require that the string length be £ = 2wa/p*. Just as
in [81, 84], we will find it useful to split our fermions into positive and negative chirality

fermions with respect to I'6789. We use S to denote the positive chirality fermions. As the
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negative chirality fermions and the scalars X%, ¢ = 2,...,5 remain free and massless, we

will ignore them. The resulting action in lightcone gauge is then given by,

1 2o pt 1 2 ) _ 0 7
S:—/dT/ do —Z<|Zk|2—|Z,'c+ka|2>+iS (6°8y + o (81 — ")) S
2mod! 0 2 —
(4.17)
There exists a field redefinition that, locally in ¢, transforms this action into that of a free

string. This transformation is [84, 97]

Z(0) = € Z4(0),  S(0) = e *7S(0). (4.18)

In terms of the new fields the action is simply

S /dT /szp+ do 122: (|§,C|2 - |Z’|2) +iS (60 +0t81) S (4.19)
0 2= ’

2mal

Note that the transformation (4.18) can change the boundary conditions of various fields.
For closed strings, the transformed fields no longer satisfy periodic boundary conditions and
the closed string spectrum in the plane-wave background differs from that of the free string.
However, the spectrum of open strings with Dirichlet boundary conditions is unaltered.

Instead, the interactions are modified in an interesting way as we will discuss presently.

4.3.3 Lightlike dipole-theories on D-branes in a plane-wave background

Consider a D1-brane that is extended in the T, = directions. The extension of the
discussion to D3-branes is straightforward. The open string excitations are described in

lightcone gauge by the action (4.17) with the boundary conditions
Zk(0) = Zp(2ma'pT) =0, 0= S5.(0) — Sg(0) = SL(2ma/pT) — Sg(2ra’p™).

As the transformation (4.18) does not affect these boundary conditions, the spectrum of
Dirichlet-Dirichlet open strings ending on a D1-brane in this NSNS plane-wave background
is the same as the flat space spectrum. The interactions, however, receive extra phases

that precisely reproduce the interactions described in section 4.2. Consider, for example, a
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2o/ pt
+ (out) V(out)
2

2ma’p

I ,pil— ,(out) Vl(out)

Figure 4.1: Scattering amplitude in the lightcone formalism.

tree level diagram that describes the scattering of open string states with vertex operators

(Om) . Vn(om) (see Figure

Vl(m) . Vn(fn) into open string states with vertex operators V;
4.3.3). When written in terms of Zk and S, these vertex operators should have the same
form as the usual free Dirichlet-Dirichlet open string vertex operators. In fact, one might
naively guess that as Zk = ¢'M9 7, the relation should be

Vi (Zi(0), ) = V(e Zlo), ), (4:20)

where 17j(i") is the free string vertex operator that corresponds to the free string state with
the same labels. This, of course, would give us the same amplitudes as in the free string
case. However, note that if we let p;_’(i") be the lightcone momentum of the j** incoming

string state, the parameter o for that state is in the range

J

j—1
270l Zp:,(m) <o<2 Z +,(in) ’
k=1

k=1
which means that the prescription (4.20) for defining the vertex operator contains phase
factors which depend on the position of the insertion of the operator along the string. This
cannot be correct.

We can solve this problem by replacing o with ¢/ = o — 2wd’ Zk 1 p;c" o(in) (which is the
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distance from the beginning of the j¥* string) so

0< o §27ra'p;—’(m) (4.21)

Vj(m) (Zi(0),...) = %(in)(e—iuo’ Z(0),-..). (4.22)

This modification leads to overall phase shifts in the vertex operators as compared to the
theory in flat space. To calculate them, we just need to know the Z; and S dependence
of the vertex operators. More formally, on the worldsheet there is a global U(1) symmetry
which acts on the Z;, by Z;, — € Z;, (and analogously on the fermions, which we neglect for
simplicity). A general vertex operator will transform under this U(1) as V) — a0y ).
Noting that 4 = 5Z, it is easy to see that the definitions (4.22) and (4.20) differ by the

phase,
Jj-1 )
=1
If we let pj_ () be the lightcone momentum of the r** outgoing string state, momentum
conservation requires p* = 2?21 p;—’(m) = 2:21 p,_f () and we see that the overall phase
for the entire amplitude is
n; j—1 ng r—1
. i (i — (3 . -
exp { i Z Z q (in) T, P, (in) i Z Z qr,(out)L p;—,(out)
j=11=1 r=1 s=1

It is not hard to see that this is exactly the same phase as the one we get by Fourier
expanding the Super Yang-Mills action of a D-brane and replacing every product with the
modified *-product (4.12).

4.4 Proposal for the S-dual Theory

In this section we will present our proposal for the S-dual of the lightlike dipole theories.
We will begin with an analysis of a dipole theory with a U(1) gauge group and a single
fermion (known as dipole QED [105, 108]) and then proceed to present our conjecture about

a dipole theory with an SU(N) or U(N) gauge group.
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The field contents of U(1) dipole QED (without any supersymmetry) is:

A, the U(1) gauge field,
1 a Dirac fermion with dipole vector L.

The Lagrangian is

1 L1 , 1.
L = @FMVF“ + @’(ﬁ’)’uDu’lﬁ, Du’(ﬁ = au’lp — Z[Au(l‘ + EL) — Au(x —

Here L is the constant dipole-vector and we assume that it is spacelike or null.
As shown in [105, 108], the Feynman rules of this theory are identical to those of ordinary

QED, with the following modification of the interaction vertex,
- L
igyt = igyt x 2i siin, (4.24)

where p is the outgoing momentum of the photon. In particular, this means that the photon

self-energy at one-loop just gets an extra factor of

QP'L
2

21 sin p X 27 sin = 4sin

(4.25)

as compared to the QED result. This suggests that the U(1) theory is IR free, just like
ordinary QED. Thus, our application of S-duality in the U (1) case will be somewhat formal,
and should be considered simply as a motivation for the conjecture in the U(N) case.

To find the S-dual description we will adopt the standard method of using a Lagrange
multiplier for the field strength.! We treat F v as an independent field subject to the Bianchi
identity €770, F,;, = 0 which we implement with a Lagrange multiplier. Of course, this
method requires that the gauge field A, does not appear explicitly in the Lagrangian. Unlike

in ordinary QED, here we can eliminate A, by performing a redefinition of variables [77]

P () = o= 3 I PP A5 Dds ) (4.26)

! A similar method was used in [114] to study S-duality for Super Yang-Mills theory on a noncommutative
R>!.
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so that (") is a U(1)-neutral field. This is the analog of the Seiberg-Witten map [59] for
dipole theories. Just as in that case, this transformation results in a theory with ordinary
gauge symmetry perturbed by an infinite number of irrelevant interactions. In particular,

since

i 1l gy s . 3 . 1
Dutp(z) = e~ S L A@+5D0ds | g (imo) () 4 %qp(mv)(x) /

LYFy(z+ %I_;)ds ,
-1

we can define

DFM/J(ZTW) (z) = a,ﬂﬁ(”w) (z) + %Qp(znv) (l‘)/ LVFN,,(.T + gL)dS,
1

to get the Lagrangian

L= LR, Py %E“"”)WDF i), (4.27)

g
Thus, as promised, the explicit dependence on A, has been removed. Further, note that

making the replacements 1) — g1, and A, — gA, in the above Lagrangian and writing

1 =g
S = 2sintL -0
Foz+-0)="2""F, .
[ dsFute+ 30 Ty @) (428)
we see that
1 1— inilL.d .
L= _Fqu“U+ _¢(mv)’yu 8N+’L.9LUSH-127FHV(IL‘) ,(p(m'u)
4 2 iL-9

is just a free theory perturbed by an infinite number of higher derivative interactions with
couplings of the form gL x L?".
We can now easily find the S-dual theory by treating F),, as an independent variable

and adding a Lagrange multiplier to the Lagrangian (4.27),

Lo = @FNVF“” + #E(mv)’)’“DFW(mU) + %ZNGWW&FW'
Except for the kinetic term, F),,, appears linearly in £3. Thus, we can integrate it out to
get, e . 1 S - 2 1 = ~
L= @ (Fuu - meum[f /1 J(z + §L)d5> + 24" Py Oy (4.29)
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where we have defined

A ~ Ar ~ = o~
g’ = T ¢ = _2¢7 Ju = ’“ﬁ’)’;ﬂﬁ- (430)
g g
If we make a further redefinition of the fields,
- 1~ o 1~ a1
b= F=oF 1= I (4.31)
we see that (4.29) can be rewritten as
1. i N L
ﬁl = Z Fuy — TGNUTP/ Jp(.’l}' + Egl L)dS + 5’1#7“8,"1/) (432)
-1

If we add minimally coupled scalars to the QED Lagrangian (4.23), with the same dipole
vector E, the expression of the S-dual £’ becomes more complicated because the interactions
are quadratic in the gauge field. The dual Lagrangian simplifies for a lightlike dipole vector.
To see this, we will fix the QED lightcone gauge A_ = 0. In this gauge the redefinition
(4.26) becomes simply (") (z) = (). Following the same steps that led to (4.29) with
minimally coupled scalars added we find that the dual Lagrangian can be obtained from

the QED Lagrangian by the substitution

g—4d, Fw/(fﬂ) _>F;Iu/(1')

o A
Fu®) =y [ Pt 30 Dds, (439)
—1

where J? is the U(1) current including the contribution of the scalars.

We see that the S-dual theory actually looks local order by order in ¢’, and only appears
non-local if we sum all orders in ¢’. In particular, the scale of non-locality in this description
is ¢’ ’I.. We can gain a clue as to the origin of the non-locality by rewriting (4.33) using

(4.28)

Fl (%) = Flu(z) — —e€prp 20— j0(a). 4.34
(%) = Fu (2) = —€uwrp 20 (z) (4.34)
inig'2Q.
Notice that only even powers of ¢ 2 enter in the Taylor series expansion of SH;;,‘(]TL[)&. It
2

would be interesting to understand this behavior directly by studying string interactions in
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the S-dual RR plane wave background (4.5)-(4.7). Note that when the NSNS background
(4.2)-(4.4) is transformed into the RR background (4.5)-(4.7) using S-duality, the Regge
slope &' of (4.5)-(4.7) is given in terms of the Regge slope o of (4.2)-(4.4) by & = gsa/.
Using (4.15) and the definition of L in (4.31) we see that L = 27r@p and so is finite in the
RR background.

In order to extend the discussion to N D3-brane probes we need to know the S-dual
description of the dipole theory that is obtained as a deformation of N’ = 4 Super Yang-Mills
theory with gauge group U(N). Since the gauge fields that correspond to the U(1) center
are IR free we can ignore them and consider only the SU(N) dipole theory. It is natural
to conjecture that the dual of the lightlike SU(N) dipole theory is given by a prescription
similar to (4.33)

1 1 3 - AT T S 3
Fu(z) — Fu(z) - ;Guwp/ {Z k(@ + 9 Lk) Z)\an($+§g'2)\a) ;

k=1 a=1

1 _ _ _
JI = §(iZkD“Zk —iDVZ 7y, —iZy D" Z), +iD* 7. Z},),
N 1 . 1 .
Ji = So" ety — 50" et (4.35)

Here we used the notation of section 4.2 and we defined the rescaled dipole vectors of the

bosons and fermions similarly to (4.31),

ir= ng T dr=am

The Lie algebra valued J ,’; and J¥ are the individual contributions of the scalars and fermions
to the su(NN) current. In (4.35) each contribution to the current enters with a coefficient that
is proportional to the dipole vector of the corresponding field. We assume that the dipole
vectors Ly, and X, are all lightlike and pointing in the same direction. We also assume that
(4.35) is written in the gauge A_ = 0. In this case all the residual gauge transformations
are independent of z~ and (4.35) is gauge invariant.

We do not know what should be the modification to the potential of the scalar fields

and the Yukawa coupling of the scalars and fermions. It is possible that those interactions
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are still given by the *-product modification (4.12) with the unrescaled dipole vectors Ly
and )\, (which are now of order ¢’ 2). Although the scalars and fermions are not expected to
transform as dipoles under the “dual” gauge fields (since they are electric but not magnetic
dipoles), in the A_ = 0 gauge the interactions are gauge invariant even after the modification

(4.12).

4.5 Conclusion and Discussion

In this chapter we have argued that particular D-brane probes of plane-wave back-
grounds are described by nonlocal field theories. In the case of an NSNS background we
have identified the field theory as a lightlike dipole theory and we have verified the state-
ment by an explicit lightcone string computation. In the case of an RR 3-form field strength
background we have provided an indirect argument, using S-duality, for the nonlocality of
the effective theory on D3-brane probes. This is a more complicated theory and we have
conjectured the form of its Lagrangian in (4.33). The nonlocality scale is proportional to
gs and it is obvious from (4.33) that one has to sum up contributions from all orders of
string perturbation theory in order to exhibit the nonlocal nature of the interactions. It
would be interesting to verify this directly from the solvable plane-wave string theory. Note
that, since the nonlocal interactions are in the lightlike direction, we can make the charac-
teristic scale arbitrarily big by a coordinate transformation that rescales z*. The excited
string states can therefore decouple safely and, as the field theoretic S-duality suggests, the
effective nonlocal field theory can be unitary.

It is interesting to extend these ideas to pp-wave backgrounds with other RR fluxes.
For that purpose we adopt the following somewhat heuristic point of view. The dipole
theories that we have described in section 4.2 have a correlation between R-symmetry charge
and electric flux. In the D3-brane language, every state with Spin(6) transverse angular
momentum also behaves as a fundamental string of finite extent. The length of the string
is proportional to its angular momentum and the proportionality constants are the dipole

vectors Lg. In the S-dual nonlocal theories that describe D3-brane probes in pp-waves with
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a 3-form RR flux every state with Spin(6) transverse angular momentum also behaves as
a D1-brane of finite extent. We can extend this line of thought to other RR-backgrounds.
For example, in a background with a 5-form RR field strength F 1934 = Fli5678 (where we
use lightcone coordinates +,—,1...8 as in [81]) and a D5-brane in directions +, —, 1235
we should find that open string states attached to the Db-brane that have, say, angular
momentum in the 78 plane also behave as a D3-brane that is spread in directions +, —, 56
and has a finite volume that is proportional to the angular momentum. This statement is,
admittedly, obscure and it would be interesting to elucidate such a theory further.
Another possible application of the ideas presented in this chapter is to M(atrix)-theory
[115]. As we have mentioned earlier, the M(atrix)-theory Hamiltonian for M-theory is
0+1D supersymmetric Yang-Mills quantum mechanics [116]-[119]. The standard derivation
of weakly coupled type-ITA string theory from M(atrix)-theory [120]-[122] requires under-
standing of the strong coupling limit of 1+1D N = 8 Super Yang-Mills theory. Dipole
theories naturally appear as M(atrix) models of Melvin spaces [104] (see also [102, 103]).
The relevant M(atrix) models are dipole theories that are deformations of 1+1D A = 8 Su-
per Yang-Mills theory. Therefore understanding the strong coupling limit of dipole theories
could prove beneficial for deriving a weakly coupled string theory descriptions of Melvin
spaces. (A string theory description for Melvin backgrounds has been given in [123] but it
has a dilaton that is not bounded.) Perhaps nonlocal worldsheet theories will play a role in
such a description. (See [124, 125] for other ideas regarding nonlocal worldsheet theories.)
We would also like to mention another new kind of nonlocal theory that appears on
D3-brane probes in certain backgrounds with strong NSNS flux [126]-[128]. It is a very
intriguing nonlocal field theory that is not translationally invariant and is described as a
gauge theory on a noncommutative space with a varying noncommutativity parameter.
Thus, as we have seen in this chapter as well as the previous chapter, non-local theories
associated with noncommutative deformations seem to be fairly generic in string theory. In
this chapter, by considering light-like limits of dipole theories, we have begun to consider
novel modifications of space-time geometry associated with non-trivial physics in Lorentzian

signature. The next chapter will begin to approach physics questions that are completely
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unique to Lorentzian manifolds, that of closed time-like curves and the radical notion of

holography.
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Chapter 5

Holography and the Godel

Universe in String Theory

In the final chapter of this dissertation, we begin to consider the question of how string
theory and quantum gravity might address issues that are unique to Lorentzian signature
space-times. In particular, we analyze the structure of supersymmetric Godel-like cosmo-
logical solutions of string theory. Just as the original four-dimensional Gédel universe, these
solutions represent rotating, topologically trivial cosmologies with a homogeneous metric
and closed timelike curves. As we have learned in the case of AdS space [80], the notion
of holography [129] seems to be key in understanding the physics of non-trivial Lorentzian
space-times. The work presented in this chapter was done in collaboration with Ed Boyda,
Surya Ganguli, and Petr Horava [159].

We focus on the “phenomenological” aspects of holography, and identify the preferred
holographic screens associated with inertial comoving observers in Goédel universes. We find
that holography can serve as a chronology protection agency: The closed timelike curves
are either hidden behind the holographic screen, or broken by it into causal pieces. In fact,
holography in Gddel universes has many features in common with de Sitter space, suggest-

ing that Godel universes could represent a supersymmetric laboratory for addressing the
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conceptual puzzles of de Sitter holography. Then we initiate the investigation of “micro-
scopic” aspects of holography of Goédel universes in string theory. We show that Goédel
universes are T-dual to pp-waves, and use this fact to generate new Godel-like solutions of

string and M-theory by T-dualizing known supersymmetric pp-wave solutions.

5.1 Introduction and Summary

Many long-standing conceptual questions of quantum gravity, and even of classical gen-
eral relativity, are finding their answers in string theory. Among the most notable examples
are various classes of supersymmetric timelike singularities, or the microscopic explanation
of Bekenstein-Hawking entropy for a class of configurations controllable by spacetime super-
symmetry. On the other hand, many puzzles of quantum gravity still remain unanswered.
In particular, the role of time in cosmological, and other time-dependent, solutions of string
theory still defies any systematic understanding.

While many crucial questions of quantum gravity are associated with high spacetime cur-
vature or with cosmological horizons, some puzzles become apparent already in spacetimes
with very mild curvature, no horizons, and even trivial topology. How can the low-energy
classical relativity fail to represent a good approximation to quantum gravity for small
curvature and in the absence of horizons? Arguments leading to the holographic principle
[129] indicate that general relativity misrepresents the true degrees of freedom of quantum
gravity, by obscuring the fact that they are secretly holographic. In those instances where
string theory has been successful in resolving puzzles of quantum gravity, it has done so
by identifying the correct microscopic degrees of freedom, which frequently are poorly re-
flected by the naive (super)gravity approximation. In this paper we investigate an example
in which holography suggests a very specific dramatic modification of the degrees of free-
dom in quantum gravity already at very mild curvatures, in a homogeneous and highly
supersymmetric cosmological background.

Historically, microscopic holography in string theory has been relatively easier to un-

derstand for solutions with a “canonical” preferred holographic screen which is observer-
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independent, and typically located at asymptotic infinity. Holography in AdS spaces is
a prime example of this. On the other hand, cosmological backgrounds in string theory
require an understanding of holography in more complicated environments, which may not
exhibit canonical, observer-independent preferred screens at conformal infinity. Here, the
prime example is given by de Sitter space: When viewed from the perspective of an iner-
tial observer living in the static patch, the preferred holographic screen in de Sitter space
is most naturally placed at the cosmological horizon. This leads to the fascinating idea
of observer-dependent holographic screens, associated with a finite number of degrees of
freedom accessible to the observer (for more details, see e.g. [130, 131, 132, 133, 134]; see
also [135, 136] for a complementary point of view on de Sitter holography that uses other
preferred screens, not associated with an inertial observer).

Of course, string theory promises to be a unified theory of gravity and quantum me-
chanics, but it is at present unclear how it manages to reconcile the general relativistic
concept of time (notoriously difficult because of spacetime diffeomorphism invariance) with
the quantum mechanical role of time as an evolutionary Hamiltonian parameter. Again,
this problem becomes somewhat trivialized in the presence of supersymmetry, but persists
in all but the most trivial time-dependent backgrounds of string theory.

In this chapter, we analyze a class of supersymmetric solutions of string theory and
M-theory, which — at least in the classical supergravity approximation — are described by
geometries with no global time function. In particular, we focus our attention on string
theory analogs of Godel’s universe. Godel’s original solution [137] is a homogeneous ro-
tating cosmological solution of Einstein’s equations with pressureless matter and negative
cosmological constant, which played an important role in the conceptual development of
general relativity. Recently, a supersymmetric generalization of Godel’s universe has been
discussed in a remarkable paper by Gauntlett et al. [138] , who classified all supersymmetric
solutions of five-dimensional supergravity with eight supercharges, and found a maximally
supersymmetric Godel-like solution that can be lifted to a solution of M-theory with twenty
Killing spinors. The existence of this solution was also noticed previously by Tseytlin,

see Footnote 26 of [139] . It is worth stressing that the Gddel universe of M-theory is
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time-orientable: There is an invariant notion of future and past lightcones, at each point
in spacetime. Also, there is a global time coordinate t, and in fact 0/0t is an everywhere
time-like Killing vector (in effect, making supersymmetry possible). However, ¢ is not a
global time function: The surfaces of constant ¢ are not everywhere spacelike. ! Actually,
the solution cannot be foliated by everywhere-spacelike surfaces at all — the classical Cauchy
problem is always ill-defined in this spacetime. It is hard to imagine how such an apparently
pathological behavior of global time could be compatible with the conventional role of time
in the Hamiltonian picture of quantum mechanics. Indeed, this solution turns out to have
classical pathologies: Just as Godel’s original solution, the supersymmetric Godel metric
allows closed timelike curves, seemingly suggesting either the possibility of time travel (cf.
[141]) or at least grave causality problems.

These classical pathologies could imply that the Godel solution, despite its high degree
of supersymmetry, stays inconsistent even in full string or M-theory. There are of course
pathological solutions of Einstein’s equations whose problems do not get resolved in string
theory, with the negative-mass Schwarzschild black hole being one example.

However, there are reasons why one might feel reluctant to discard this solution as
manifestly unphysical, despite the sicknesses of the classical metric: This solution is homo-
geneous, its curvature can be kept small everywhere (in particular, there are no singularities
and no horizons), and the solution is highly supersymmetric. It is also impossible to elim-
inate the closed timelike curves by going to a universal cover — indeed, the Godel solution
is already topologically trivial.?

We feel that any solution should be presumed consistent until proven otherwise, and this
will be our attitude towards the Godel solution in this chapter. Our aim will be to analyze
holographic properties of the supersymmetric Godel solution in string theory. The solution

is remarkably simple, and as we will see in Section 5, turns out to be related by duality to the

!See, e.g., [140] for a detailed discussion of the distinction between a global time coordinate and a global
time function.

*>This should be contrasted with the case of solutions with “trivial” (in the sense of Carter [142]) closed
timelike curves, such as those in the flat Minkowski spacetime with time compactified on S!, where the
closed timelike curves can be eliminated by lifting the solution to its universal cover.
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solvable supersymmetric pp-wave backgrounds much studied recently. However, before we
attempt the analysis of “microscopic” holography in string theory, we will first adopt a more
“phenomenological” approach as pioneered by Bousso [143] (see [131, 144] for reviews), and
analyze the structure of preferred holographic screens implied by the covariant prescription
[143] for their identification in classical (super)gravity solutions. This “phenomenological”
analysis leads to valuable hints, indicating how the problem of closed timelike curves may
be resolved in the Gédel universe. Indeed, we will claim that the apparent pathologies of the
semiclassical supergravity solution can be resolved when holography is properly taken into
account. Semiclassical general relativity without holography is not a good approximation of
this solution, despite its small curvature, absence of horizons, and trivial spacetime topology.

Notice also that homogeneity of the Godel solution makes things at least superficially
worse: It implies that there are closed timelike curves through every point in spacetime.
However, these closed timelike curves are also in a sense (to be explained below) topologically

“large.”

Our analysis of the structure of holographic screens in this geometry reveals an
intricate system of observer-dependent preferred holographic screens, which always carve
out a causal part of spacetime, and effectively screen all the closed timelike curves and hide
any violations of causality from the inertial observer. In fact, the causal structure of the
part of spacetime carved out by the screen is precisely that of an AdS space, cut off at some
finite radial distance.

The preferred holographic screens in the Godel universe are very much like the screens
associated with the inertial observers in the static patch of de Sitter space. First of all, they
are associated with the selection of an observer (and therefore represent “movable,” non-
canonical screens, not located at conformal infinity). Moreover, they are compact, implying
a finite covariant bound on entropy and — in the strong version of the holographic principle
— a finite number of degrees of freedom associated with any inertial observer. Thus, the
Godel universe should serve as a useful supersymmetric laboratory for addressing some of
the conceptual puzzling issues of de Sitter holography.

The results of our “phenomenological” analysis of holography also reveal the importance,

for cosmological spacetimes, of a local description of physics as associated with an observer
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inside the universe. It is not sensible to pretend that the observer stays at asymptotic
infinity, and observes only elements of the traditionally defined S-matrix (or some suitable
analogs thereof). Clearly, this only stresses the need for a conceptual framework defining
more environmentally-friendly, “cosmological” observables as associated with cosmological
observers in string theory.

This chapter is organized as follows. In Section 5.2, we set the stage by reviewing
and analyzing Godel’s cosmological solution Gg x R of Einstein’s gravity in four space-time
dimensions. Despite its simplicity, this solution already exhibits all the crucial issues of our
argument. We apply Bousso’s prescription for the covariant holographic screens, and find
screens that are observer-dependent, compact, and causality-preserving. In addition, we
establish connection with holography in AdS spaces: Godel’s solution can be viewed as a
member of a two-parameter moduli space of homogeneous solutions of Einstein’s equations
with trivial spacetime topology, with AdS3 x R also in this moduli space. We show that
under the corresponding deformation the observer-dependent preferred holographic screens
of Godel’s universe recede to infinity and become the canonical holographic boundary of
AdSs3 x R. In Section 5.3 we move on to the supersymmetric Godel universe of M-theory,
which can be written as G5 x R®. First we analyze the G5 part of the geometry as a
solution of minimal d = 5 supergravity, study in detail the structure of geodesics in this
solution and use it to determine the preferred holographic screens, and show how chronology
can be protected by holography. Then we extend our analysis to the full G5 x R® Godel
geometry in M-theory. Section 5.4 points out remarkable analogies between holography
in the supersymmetric Godel universe and holography in de Sitter space. In Section 5.5,
we embark on the analysis of “microscopic” duality of Godel universes in string theory.
First, we compactify the M-theory solution on S! to obtain a Godel solution of Type IIA
superstring theory, and show that upon further S! compactification the Type IIA Godel
universe is T-dual to a supersymmetric Type IIB pp-wave, which can be obtained as the
Penrose limit of the intersecting D3-D3 system. We point out that this Goédel/pp-wave
T-duality is a much more general phenomenon, and can be used to construct new Godel

universes in string and M-theory by T-dualizing known pp-waves. The relation to pp-waves
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is just one aspect of the remarkable degree of solvability of Godel solutions in string theory.
We intend to present a more detailed analysis of “microscopic” aspects of holography in
the Godel universes of string and M-theory elsewhere [145]. Finally, in Section 5.6 we

summarize some geometric properties of the supersymmetric Godel solutions.

5.2 Holography in Godel’s Four-Dimensional Universe

5.2.1 Godel’s solution

In 1949, on the occasion of Albert Einstein’s 70th birthday, Kurt Godel presented
a rotating cosmological solution [137] of Einstein’s equations with negative cosmological
constant and pressureless matter; this solution is topologically trivial and homogeneous but
exhibits closed timelike curves. Our exposition of Gédel’s solution follows [137, 1].

The spacetime manifold of this solution has the trivial topology of R*, which we will
cover by a global coordinate system (7, z,vy,z). The metric factorizes into a direct sum of

the (trivial) metric dz2 on R and a nontrivial metric on R3,
ds3 = ds3 + d2?, (5.1)

where

1
ds? = —dr? + da? — §e4mdy2 — 2> ¥ dr dy. (5.2)

This class of solutions is characterized by a rotation parameter . We will refer to the
manifold R3 equipped with the non-trivial part 5.2 of Godel’s metric as G3. Thus, in our
notation, G6del’s universe is G3 X R. The metric on G3 has a four-dimensional group of
isometries. The geometry exhibits dragging of inertial frames, associated with rotation. The
full four-dimensional geometry solves Einstein’s equations, with the value of the cosmological
constant and the density of pressureless matter both determined by the rotation parameter

Q,
Q2

P= Gl A = —20% (5.3)
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Historically, this solution was instrumental in the discussion of whether or not classical
general relativity satisfies Mach’s principle (see, e.g., |,| Sect. 12.4).

While the homogeneity of G6del’s universe is (almost) manifest in the coordinate system
used in 5.2 , the rotational symmetry of ds% around any point in space becomes more obvious

in cylindrical coordinates (¢,7, ¢), in which the metric takes the following form,

2v/2
ds3 = —dt® + dr? — L (sinh*(Qr) — sinh?(Qr)) d¢? — Tf sinh?(Qr) dt de. (5.4)

02

Indeed, 0/0¢ is a Killing vector, of norm squared
62—11 inh?(Qr)) sinh?(Q 5.5
99 _W( — sinh*(Qr)) sinh®(Qr). (5.5)

The orbits of this Killing vector are closed, and become closed timelike curves for r > rg,
1 1
ro = garesinh (1) = S In(1 + V?2). (5.6)

We will call the surface of r = ry the velocity-of-light surface; the null geodesics emitted
from the origin in this coordinate system reach the velocity-of-light surface in a finite affine
parameter, and then spiral back to the origin where they refocus, again in finite affine
parameter.

The homogeneity of the solution implies that there are closed timelike curves through
every point in spacetime. Note that in a well-defined sense all the closed timelike curves are
topologically “large”: In order to complete a closed timelike trajectory starting at any point
P, one has to travel outside of the velocity-of-light surface (as defined by an observer at
P) before being able to return to P along a causal curve. This fact will play an important
role in our argument for the holographic resolution of the problem of closed timelike curves
below. Notice also that none of the closed timelike curves is a geodesic, and that the closed
timelike curves cannot be trivially eliminated by a lift to the universal cover: The manifold
is already topologically trivial.

Godel’s universe represents a solution with a good timelike Killing vector (indeed, 0/0t
is Killing and everywhere timelike), which however cannot be used to define a universal time
function: The slices of the foliation by surfaces of constant ¢ are not everywhere spacelike.

The classical Cauchy problem is always globally ill-defined for this geometry.
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Figure 5.1: The geometry of the three-dimensional part Gs of Godel’s universe, with the
flat fourth dimension z suppressed. Null geodesics emitted from the origin P follow a spiral
trajectory, reach the velocity-of-light surface at the critical distance rg, and spiral back to
the origin in finite affine parameter. The curve C of constant r > r¢ tangent to 9/9¢ is

an example of a closed timelike curve. A more detailed version of this picture appears in
Hawking and Ellis [1].

5.2.2 Preferred holographic screens in Godel’s universe

We now apply Bousso’s phenomenological framework for holography [143, 131, 144] to
Godel’s universe. We indentify its preferred holographic screens, associated with particular
observers as follows:

Consider a geodesic observer comoving with the distribution of dust in Godel’s universe

(and placed at the origin 7 = 0 of our coordinate system without loss of generality). Imagine
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that the observer sends out lightrays in all directions from the origin at some fixed time, say
t = 0. These lightrays will at first expand — i.e., the surfaces that they reach in some fixed
affine parameter A will grow in area, at least for small enough values of A\. The preferred
holographic screen will be reached when we reach the surface of maximal area (or maximal
geodesic expansion).

Alternatively, one can follow incoming lightrays into their past, until reaching the surface
where the geodesics no longer expand. This is again the location of the preferred screen B.
The preferred screen B can then be used to impose a covariant bound on the entropy inside
the region of space surrounded by B [143], which should not exceed one-fourth of the area
of B in Planck units.

We will first analyze the three-dimensional part G3 of Goédel’s solution, which contains
much of the nontrivial geometry. Even though all the geodesics of Godel’s universe are
known [147] , one can in fact use the symmetries of G3 to determine the location of the screen
without any explicit knowledge of the geodesic curves. Since G3 is rotationally invariant in ¢,
all the null geodesics emitted from the origin will reach the same radial distance r(\) within
the same affine parameter (assuming that we use a rotationally invariant normalization
of A for geodesics emitted in different directions from the origin), and also for the same
global time coordinate ¢. Thus, to determine the surface of maximal geodesic expansion,

we can just evaluate the area of the surfaces of constant r and ¢ (in our case of course

A= %T sinh(Qr)y/1 — sinh?(Qr), (5.7)

and maximize it as a function of r. This very simple calculation yields a preferred screen

one-dimensional),

‘H that is isomorphic to a cylinder of constant r = ry and any %, with

1 1
TH = ﬁarcsinh (E) . (5.8)

Of course, this screen is observer-dependent, in this case associated with the comoving
inertial observer located at the origin for all values of £. Other comoving inertial observers
would see different but isomorphic screens, in a pattern similar to the structure of cosmo-

logical horizons associated with inertial observers in de Sitter space.
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r>r

Figure 5.2: The geometry of our preferred holographic screen in Godel’s universe, as defined
by the inertial observer following the comoving geodesic at the origin of spatial coordinates.
The translationally invariant dimension z is again suppressed. Two closed timelike curves
are indicated: One, C, at constant value of ¢t = 0 and r > r( is outside of the preferred
screen, while another, C’, passes through the origin at ¢ = 0 and intersects the screen in
two, causally connected points.

One can take advantage of the rotational symmetry of the solution, and visualize the
location of the preferred screen using a spacetime diagram of the type introduced by Bousso
[143] (see Figure 3). This diagram suppresses the dimension of rotational symmetry ¢, and
its points represent (in our case one-dimensional) orbits of the rotation group, i.e., surfaces
of constant 7 and t. For each such surface, one can define the total of four lightsheets: Two
oriented forward in time, and two oriented backward. In generic points of the diagram, two
of these lightsheets will be non-expanding. At each point of the Bousso diagram one can

draw a wedge pointing in the direction of non-expanding lightsheets. These wedges then
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point in the direction of the preferred holographic screen.
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Figure 5.3: The Bousso diagram for the G3 part of the Godel universe metric, with the
angular coordinate ¢ suppressed, and the structure of non-expanding lightsheets indicated
by the bold wedges. The preferred holographic screen is at the finite value r4 of the radial
coordinate r, strictly smaller than the location of the velocity-of-light surface at ry. A
null geodesic sent from P would reach the velocity-of-light surface at P” in a finite affine
parameter, and refocus again at the spatial origin in P’.

One can directly verify that our preferred holographic screen satisfies the defining prop-
erty
0 =0, (5.9)

where 6 is the expansion parameter defined for a spacelike codimension-two surface B (in

any spacetime with coordinates z*) as
6 = h*"D,(, (5.10)

with ¢, the light-like covector orthogonal to B (smoothly but arbitrarily extended to some

neighborhood of B), D, is the covariant derivative, and hy, is the induced metric on B.



5.2. HOLOGRAPHY IN GODEL’S FOUR-DIMENSIONAL UNIVERSE 108

The most convenient way of identifying the surface of 8 = 0 in Godel’s universe is to use
as ¢ the vector tangent to the congruence of null geodesics emitted by the observer at the
origin. An explicit calculation confirms in this case that 6 is proportional to 0,g4¢, and
therefore vanishes at the surface of r = ry.

The metric induced on the preferred holographic screen H is of signature (—+), every-
where nonsingular:

1, V2
— = 11
T’ + - d dt (5.11)

with 0 < ¢ < 2w. The preferred holographic screen carves out a cylindrical compact region

ds3, = —dt? +

of spacetime (which we will call the holographic region) in the G3 part of Godel’s universe,
centered on the comoving inertial observer at the origin. This region contains no closed
timelike curves, as can be easily demonstrated by noticing that the causal structure of the
holographic region is identical to that of a cylindrical portion of (the universal cover of)
AdS3. The closed timelike curves of the full G3 geometry fall into two categories: Either
they stay completely outside of the holographic region, or they enter it and leave it again

after traveling a causal trajectory within the holographic region.

Preferred screens in G3 x R

The full Godel universe is of the direct product form G3 x R. The presence of the extra,
translationally-invariant dimension parametrized by z actually implies a richer structure of
preferred screens than the one we just found in the Gs factor. This is in fact a preview
of what we will find in the next section in the case of supersymmetric Godel solutions in
M-theory and string theory: Those solutions typically also contain extra flat dimensions.

First of all, there is one preferred screen that can be easily identified: The three-
dimensional surface H x R, where # is the preferred screen associated with the observer at
the spatial origin in G3, and R is the extra coordinate z, clearly satisfies the zero-expansion
condition 5.9 . Thus, by definition, this surface H x R is a preferred screen. This screen is
observer-dependent, and the observer associated with it can be thought of either as a string

wrapped around z or as a more traditional observer “delocalized” along z, each localized
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at the origin of coordinates in G3. Unless we compactify z on S', the overall area of this
translationally-invariant screen is of course infinite, but the screen still has a finite “area
density” per unit distance along z.

Alternatively, one can ask what is the preferred screen associated with an localized
inertial observer in Gz x R. If one follows null geodesics emitted from (or converging onto)
a point in Gg X R where the the observer is located, one finds that the surface of maximal
geodesic expansion is at a finite distance from the observer in all space directions including
z. This compact, translationally-noninvariant screen is completely contained within the
velocity-of-light surface as defined by the observer.

For either of these two classes of screens in G x R, all closed timelike curves are again

either hidden outside of the screen or broken by it into causal observable pieces.

Covariant entropy bounds and screen complementarity

The existence of preferred screens, and the structure of the Bousso diagram for Godel’s
universe imply a holographic entropy bound on the amount of entropy through any spatial
slice of the compact holographic region associated with each screen. This entropy is limited
by one fourth of the area of the screen measured in Planck units. Our screen is neither
at conformal infinity, nor located at a horizon. The closest analog would be the preferred
holographic screen located at the equator of the Einstein static universe. Just as in that
case, the holographic screen of Godel’s universe can be used to bound the entropy in either
direction normal to the screen. In particular, the lightrays that start at the screen and
travel in the direction of larger values of r refocus at the velocity-of-light surface, and then
travel back again to the screen. This is rather reminiscent of the behavior of lightrays in
Einstein’s static universe: lightrays emitted from one pole of the spatial sphere reach the
screen at the equator and travel to the other hemisphere, refocus at the opposite pole, and
travel back to the screen and then to the point they were originally emitted from.

The strong version of the holographic principle suggests that the compact holographic

screen implies a finite bound on the number of degrees of freedom effectively accessible to
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the inertial observer. The good causal structure of the holographic region associated with
that observer may suggest that the quantum mechanics of this finite number of degrees
of freedom could be well-defined, and screened from the acausal behavior outside of the
velocity-of-light surface by a screen complementarity principle.

Of course, one may find the very definition of entropy in spacetimes with closed timelike
curves somewhat problematic. However, in the case of Godel’s universe all that matters for
our argument is the region strictly below the velocity-of-light surface. One can in principle
imagine cutting Godel’s solution off at some finite r larger than r4 but smaller than ry, and
replacing the outside with some causal geometry. The covariant entropy bound can then be
safely applied to the holographic region, without any possible conceptual difficulties with
the definition of entropy in the presence of closed timelike curves.

The intricate structure of compact preferred screens associated with the observers in
Godel’s universe suggests that holography may be the correct, causal way of thinking about
this geometry without modifying it. However, one is forced to replace the naive “metaob-
server” perspective of the geometry by a system of local observers, each of which sees a
causal region screened from the rest of the naive classical geometry by the preferred holo-
graphic screen. Each individual observer would only have access to a finite amount of
degrees of freedom associated with the corresponding holographic region. Within this finite
number of degrees of freedom, causality and quantum mechanics would be protected.

In this chapter we will not discuss non-inertial observers attempting to travel along
closed timelike curves. In the spirit of Hawking’s original chronology protection conjecture
[148] , one may expect a large backreaction from the geometry that can protect the solution

from such observers.

5.2.3 Godel’s universe as deformed AdS; and holography

It is useful to embed our discussion of Godel’s universe into a broader framework.
Consider all spacetime-homogeneous metrics of the Goédel type. It has been shown [149]

that this family of metrics is parametrized by two parameters, {2 and m, with the metric
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given by

2
ds? = — (dt + 4:7?29 sinh? (%) d¢> n # sinh?(mr) d¢? + dr? + dz2, (5.12)

with © € R and m? € R. For m? = 402, we recover Gédel’s metric 5.2 . On the other
hand, for m? = 802 we get the direct-product metric on AdS3 x R [150] . Notice also that
the metric simplifies in the limit of m — 0 keeping €2 fixed; this metric has been analyzed
by Som and Raychaudhuri [151] , and is in fact a closer analog of the string theory Gdodel
universe than Godel’s solution itself.

Since all the solutions in 5.12 are rotationally invariant, we can easily identify the
preferred screens for this entire family of metrics using the same symmetry argument as in
Godel’s universe itself. The holographic screens H of the non-trivial three-dimensional part

of 5.12 are now located at

2 1602\
ry = —arcsinh (( 5 = 2) . (5.13)
m m

Thus, for m? < 802, the screen is at a finite value of r4, and as we approach the AdS3 x R

limit it recedes to infinity and becomes the canonical holographic screen of AdS3. This
connection with AdSs leads to a particularly intriguing way of thinking about holography
of this family of solutions in terms of breaking conformal invariance on the holographic
screen of AdS3 once we move away from the AdSs limit.

Clearly, our observation that preferred holographic screens can either screen closed time-
like curves or break them up into causal pieces is not restricted to homogeneous spacetimes.
An example of the same phenomenon in an inhomogeneous solution can be easily found:
Consider the classic cylindrically symmetric inhomogeneous solution with closed timelike
curves found in 1937 by van Stockum, [152] , which in the cylindrical coordinates takes the
form

ds® = —dt? — 20r2dpdt + r2(1 — Q2r2)dg? + e~V (d22 + dr?). (5.14)

It is straightforward to show that the preferred holographic screen as defined by the inertial
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observer located at the origin is again compact and shields the closed timelike curves from

the observer, just as in the case of the homogeneous Gddel universe.

5.3 Holography in Supersymmetric Godel Universes

The Godel solution of M-theory found in [138] has a direct product form G5 x R®, where
the non-trivial five-dimensional part G5 represents a maximally supersymmetric solution of
minimal supergravity in five dimensions. The underlying spacetime of G5 is topologically
trivial, isomorphic to R®. Again, just as in the case of Godel’s four-dimensional solution,
much of the nontrivial structure of the solution is carried in this five-dimensional factor
Gs, which plays a role analogous to Gs of the previous section. We will therefore study

holography of this five-dimensional solution first.

5.3.1 Holography in the Godel universe of N =1 d = 5 supergravity

The five-dimensional Gédel geometry G5 is a maximally supersymmetric, topologically
trivial, homogeneous solution of minimal five-dimensional supergravity [138] . We introduce
generic coordinates X*, ;1 = 0,...4 on R5, but we will soon specialize to several specific
coordinate systems. The minimal d = 5 supergravity contains an Abelian gauge field 4,

whose field strength F),, we normalize such that the Lagrangian has the following form,

1 1
Ls=-—5 | X (R—-F,F" +... 5.15
s= g [ X (B gRaP ), (5.15)
where the “...” stand for a Chern-Simons self-interaction of the gauge field and for fermionic

terms.
The Gédel solution takes the form of a fibration over the flat Euclidean R* with fibers
isomorphic to R and with a simple twist, which in a Cartesian coordinate system ¢, z;,

1 =1,...4, can be written as

ds* = —(dt+ pw)? + i, da?, (5.16)
F = 2V/38J, (5.17)
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with the twist one-form w given by
w = x21dr9 — Todx1 + T3dT4 — T2dT3 = Jijxidxj, (5.18)

and Jig = —Jo; = Jy4 = —Jyu3 = 1 a preferred Kihler form on R*. In 5.16 , § is a constant
rotation parameter, of mass dimension one. Without any substantial loss of generality, we
will assume S to be positive.

As remarked in [138] , this solution is homogeneous, and in fact has a nine-dimensional

group of bosonic isometries. The Killing vectors are given by

Py, = 0, (5.19)
f’i = 81 — ﬁJijiL‘jat, (5.20)
L = 10y — 1901 + 304 — 1405, (5.21)
Ry = z10y — 1901 — 1304 + 2403, (5.22)
Ry = 105 — 1301 + 2204 — 2405, (523)
Rs = 104 — 401 + 2309 — 2203, (524)
where 0; = 0/0z;. The commutation relations of this bosonic symmetry algebra are
[Ra, R/j] = 26a§7R7, [L, Ra] = 0, [B, PJ] = 2,3.]”130 (525)
Here o, f3,... = 1,2,3 go over a basis of anti-selfdual two-tensors in R*. R, and L act

on the momenta F; as rotations. Thus, we find that the symmetry algebra of the Gédel
universe G5 is given by the semidirect product H(2) & (SU(2) x U(1)), where H(2) is the
Heisenberg algebra with five generators. 3

While the translation symmetries P; of the solution are almost manifest in the cartesian

coordinates t, z;, the rotation symmetries are rather obscure. It is therefore convenient to

3As we will see in Section 4, the remarkable similarity between this symmetry algebra and a pp-wave
symmetry algebra is not a coincidence: When lifted to string theory, the Gddel solution is actually T-dual
to a supersymmetric pp-wave! Notice, however, that in the symmetry algebra of Gs, the central extension
generator Py of the Heisenberg algebra is represented by a timelike Killing vector, while in the pp-wave it
would be null. One can actually show by a direct calculation that the five-dimensional Gédel universe (or
the string theory lifts thereof to be studied below) does not admit any covariantly constant null vectors,
which proves that it is not “secretly” a pp-wave in unusual coordinates.
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introduce a new coordinate system. First, we introduce a pair of polar coordinates, one in

each of the two main planes of rotation,

T1 =T1COS¢1, T3 = T3COS o, (5.26)

Ty =rT18ing1, x4 =rrsings. (5.27)

In these “bipolar” coordinates, the metric becomes

ds? = —dt® — 28(r2d¢y + ridgo)dt + dr? 4 dr3 — 282r?r2 dp1dg,

(5.28)
+rE(1 = B%r)det +r3(1 — B7r3)dg3.

The non-Abelian part of the rotation symmetries becomes manifest in spherical coordinates

(T‘, ¢15¢25"9)7 with J € [Oaﬂ-/2)7

T14izg = 1€ cosd, (5.29)

T3 +izy = re?sind), (5.30)

which bring the metric to the following form,

2 2
ds® = — (dt + %@,) + dr? + r2dQ3. (5.31)

Here dQ% is the standard unit-volume metric on S3, and o3 is one of the right-invariant
one-forms on SU(2),

o3 = 2(cos® 9 dey + sin® 9 dgs). (5.32)

It is clear from this expression for the metric that even though the solution does not exhibit
the full SO(4) ~ SU(2) x SU(2) rotation symmetry in R*, the non-zero rotation parameter
B keeps the right SU(2) (together with a U(1) subgroup of the left SU(2)) unbroken.

It was also noted in [138] that the Gddel universe G5 preserves all eight supersymmetries
of minimal d = 5 supergravity. Thus, the bosonic symmetry algebra 5.25 will extend to a

superalgebra with eight supercharges (). It is natural to split ) into two four-component
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spinors, @QF. In this notation, the (anti)commutation relations of the full symmetry super-

algebra can be written as follows,

[P, Q%] = 0, [P, Q%] = 0,

{@t.Q*}y = 'R, {Q,Q} = TP +26L), (5.33)
[R,QF] = TrQ*, [P,Q7] = BJ;IVQT,

{Q-,Q*} = 'R,

together with 5.25. In 5.33, R denotes any of the rotation generators R, or L, and 'y is
a shorthand for the generator of conventional rotations associated with R € SO(4), in the
corresponding spinor representation of SO(4).

Once we examine the structure of preferred holographic screens in the next subsection,
it will be interesting to see how these screens are compatible with the structure of the

supersymmetry algebra 5.25 , 5.33 .

5.3.2 Preferred holographic screens

Counsider an inertial, comoving observer located at an arbitrary point in space, which
we place without any loss of generality at the origin of cartesian coordinates z; = 0. Since
we are focusing on the perspective of an observer at the origin, it will be convenient to use
either the “bipolar” or the spherical coordinates.

The symmetry arguments that allowed us to identify the preferred screen in Goédel’s
universe G without actually calculating the geodesics can in fact be extended to the su-
persymmetric solution Gs as well. Despite the fact that the full SO(4) rotation symmetry
of R* is broken to an SU(2) x U(1) subgroup, the unbroken group still acts transitively on
the three-spheres of constant r. Indeed, one can think of the S* at constant r as a copy of
SU(2), on which the full SO(4) rotations would act by the left action of one SU(2) and the
right action of the other SU(2). In the Godel solution, the metric on the S of constant
radius is that of a squashed three-sphere, which still leaves the (transitive) right action by
SU(2) unbroken. This unbroken SU(2) is sufficient to reduce our analysis of the location

of preferred screens to the maximization of the area of the surfaces S® of constant r as a
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function of r (at constant t), precisely as in the simpler case of G studied in the previous
section. Without knowing the precise structure of the null geodesics emitted at some time
t < 0 in all directions from the origin, the symmetries imply that these geodesics will reach
the S3 of some fixed radius r at ¢t = 0.

Thus, in order to find the preferred holographic screens associated with the inertial
comoving observer at the origin, we only need to maximize the volume of the 83 at fixed r,

as a function of 7. The induced metric on the S of radius r at constant ¢ is given by

ds? g = r’d9* + r? cos* 9(1 — B*r? cos® 9)d¢? (5.3
+r2sin29(1 — B2r2 sin? 9)dg2 — 262 cos? 0 sin I depy ddba, '

implying that the induced area of this surface is given by

A(r) = /S . Vhina = 20%r34/1 — 8272, (5.35)

where h;,q is the determinant of the induced metric 5.34 . We conclude that the pre-

ferred holographic screen is located at radial distance r (call it r4) where the area 5.35 is

maximized,
V3
The screen carries a Lorentz-signature induced metric,
3 ) 3 .
ds3, = —dt® — %(COSQ 9 dgy + sin® 9 deo) dit + 15 d9? + cos® 9 d¢p? + sin® 9 dep3 o
5.37

- % (cos? 9 dey + sin? 9 depo)? |,

with each spacelike slice of constant ¢ isomorphic to the squashed three-sphere of radius
and squashing parameter 3/4. The screen metric 5.37 seems to exhibit dragging of frames,
but this is an artifact of a coordinate choice. Upon intoducing new angular coordinates by
b1 = ¢ — 4Pt, po = o — 4f3t, 5.37 becomes

3

2 _ 2
dsy = ~4d + 155

d9? + cos? 9 d¢? + sin® 9 dp3 — Z(cos2 9 dgy +sin® 9 dgo)?| . (5.38)
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This phenomenon is analogous to the behavior of horizons in rotating black holes in five
dimensions [153] .

The screen and its location in the Godel universe can be visualized exactly as in Fig. 2,
with ¢ now collectively denoting the coordinates on the squashed three-sphere. Again, the
preferred screen cuts out a compact region of space with the observer inside, which we will
refer to as the holographic region.

The compact preferred holographic screen also implies a finite bound on the entropy
that flows through a space-like section of the holographic region. This entropy has to be
smaller than one fourth of the area of the screen in Planck units,

27r37“§’_£

S < . .
<=2 (5-39)

(Notice that our s is related to the 5d Newton constant by 87Gy = k2.)

It is interesting to analyze the symmetries preserved by the screen. While all the rotation
symmetries SU(2) xU(1) as well as the time translation symmetry are left unbroken, all the
space translations are broken by the screen. Similarly, the structure of the supersymmetry
algebra reveals that one half of the supercharges (namely @) will be broken by the screen,
while the remaining half of supersymmetry represented by Q™ (and associated with Killing
spinors which are simply constant) is compatible with the presence of the screen. Thus, the
screen can preserve as much as 1/2 of the full supersymmetry of the Gdel solution, leaving
an unbroken symmetry which coincides with the symmetry left unbroken by the choice of
the inertial comoving observer. Once we lift the solution to M-theory, we can also think of
the preferred comoving observer as a massless particle moving with the speed of light along
the extra dimension and preserving 1/2 of supersymmetry. Thus, the symmetries of the
observer seem compatible with the symmetries that can be left unbroken by her preferred
holographic screen.

In order to verify that this simplified argument for identifying the preferred screens,
which relies on the large symmetry of the solution, coincides with the conventional local
definition of the screen [143] as the surface of vanishing expansion parameter # = 0 of the

null geodesics emitted from (or, by the time reflection symmetry, sent towards) the origin
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in space, we must first analyze the structure of geodesic motion in the Godel spacetime.

This analysis will also refine our understanding of the Godel universe geometry.

5.3.3 Geodesics in the Godel universe Gy

In this subsection we will find all the geodesics in the Gbédel universe. First, one can use
the symmetries of the solution to simplify the analysis. By homogeneity, it will be sufficient
to consider geodesics through the origin P of our coordinate system, P = {t = z,,, = 0}. In
any case, for the identification of the preferred screens we are primarily interested in null
geodesics emitted from the origin.*

We will write the tangent vector to the geodesic as

. 0 0 .0 0 -0
=t—+M— — +To— — A4
3 8t+r18n+¢18¢1+r23r2+¢26¢2, (5.40)
where " = d/d\ denotes the derivative with respect to an affine parameter A along the

geodesic.
The large amount of symmetry of the Godel universe allows us to explicitly solve for all
the geodesics without any restrictions. First of all, the following integrals of motion will be

useful,

(fag) = _MQ’ (é-aat) =-FK, (541)
(55 6¢>1) = L, (f, 8(152) = Lo. (5-42)

Here L1, Ly are the angular momenta in the two preferred planes of rotation. The + sign
of M? corresponds to timelike and spacelike geodesics, with E the energy of the particle in
the timelike case. In the null case M? = 0 we will find it convenient to rescale the affine

parameter A along the geodesic so as to set £ = 1.

“Moreover, since the SU(2) part of the symmetry group acts transitively on the celestial sphere at P, one
could rotate the initial momentum vector along the geodesic to lay entirely in the 3 = z4 = 0 plane. By
angular momentum conservation, corresponding to the two Killing vectors 0/0¢1 and 9/0¢2, the geodesic
would then stay in the z3 = x4 = 0 plane throughout its history.
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The integrals of motion 5.41 imply

¢ =PE+ 7, d2=PE+ 4, (5.43)
t =(1-p%%—p*3)E - B(L1 + L), (5.44)
as well as
N2 L ()2 2.2 2, 2\p2 Ly L3 9
(7)? + (72)® — (1 = B%r} — B°r3)EB* + 2BE(L1 + Lo) + —5 + —3 5 =-M" (5.45)
rf o3

In order to identify the holographic screen we need the null geodesics going through
the origin. Note that for non-zero values of the angular momenta L; or Lo, the effective
potential for r; and ry precludes the geodesics from reaching the origin r = ro = 0. Thus,
all the geodesics passing through the origin will have L; = Ls = 0, and we focus on those
now. ° In order to separate 7; from 7y we need one more integral of motion. Consider

(&, R3) = (sin ¢y sin gy + cos ¢y cos ¢o) (T—2L1 + r—ng)
™1 2 (5.46)
+ (sin ¢1 cos o — cos ¢y sin ¢o)(rar1 — T179)-
At zero angular momentum, 5.46 has to vanish, implying that the angle ¥ between r; and
ro is another integral of motion. Thus, the equations of motion for the geodesics that pass

through the origin of space simplify to
(+)? + B*r2E% = E? — M?, (5.47)

plus 5.43 with L; set to zero. These can be easily solved, yielding

r o= %\/ — M?sin(BA) cos ¥, (5.48)
ry = %\/ 2sin(BA) sind, (5.49)
t = ;(1 + M)\ + @(1 — M?)sin(28) + to, (5.50)
¢ = BA+”, (5.51)
¢ = B+ (5.52)

®0f course, all the geodesics with nonzero angular momenta can be easily obtained from those with zero
angular momenta by the action of the large isometry group of the Gédel metric.
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with 9 € [0,7/2) and ¢g0)’ gbgo) € [0, 27) all constants. We have rescaled the affine parameter
X so as to set E equal to one. For null geodesics, M2 = 0, while for the timelike geodesics
M? € [0,1] as a result of our rescaling of A. Notice that the comoving time ¢ at the origin
(the coordinate corresponding to the Killing vector d;) is not a good affine parameter along
the null geodesics passing through the origin. Instead, either one of the two main rotation
angles ¢1, ¢2 plays the role of a natural affine parameter (as long as 8 is nonzero of course).

Even though the spherical coordinate system is not smooth at the origin, it is easy to
verify — by switching to the original Cartesian coordinate system — that the system of null
geodesics 5.48 represents the complete system of all geodesics passing through the origin.

Indeed, the tangent vector to this congruence at A = 0 is given in the Cartesian coordinates

by

€lrmo = % + cos ¥ cos ¢§°)ai + cos sinqsgo)ai
)" - (5.53)

+ sind cos w% + sin® sin ¢§°)£,
3 4

demonstrating that the constants 1, (,2550) and nggO) are indeed parametrizing the entire ce-
lestial sphere at the origin.

Thus, we see an interesting refocusing behavior of all geodesics in the Godel universe:
They start moving from the origin towards larger values of r, which at first means larger

proper-radius spheres, but then at affine parameter

_7'('
26

they reach the velocity-of-light surface, located at the largest value r( of the radial coordinate

A (5.54)

r that is accessible by geodesic motion from the origin,

1
ro = —. 5.55
3 (5.55)
By that time, both ¢; and ¢2 change exactly by /2. Then it takes another
AN= = (5.56)

2B
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to complete one period of oscillation and refocus at the origin. The amount of global

comoving time coordinate elapsed during the completion of one oscillation cycle equals

.

Note that the lightray arrives with its momentum equal to the intial-value momentum; thus,

At (5.57)

the lightray traveled a full circle in the (z1,z2) plane. The same holds true for the (z3,z4)
plane.

During one refocusing cycle, the proper area of the three-sphere reached by the geodesics
reaches a maximum twice, precisely when they reach the preferred screen — first on their
way out towards the velocity-of-light surface (where the proper area of the S3 goes to zero)
and then again on their way back to the origin. In fact, they reach the holographic screen
for the first time at affine parameter

A=— (5.58)

one third into the oscillation cycle.

Since any given geodesic moves around a circle in each of the preferred planes of rotation,
it is instructive to use the translation symmetries of the solution, and transform 5.48 into
the frame associated with the observer at the center of this circular motion. The Killing
vectors 5.19 can be easily integrated to give finite translations. For example, we find that

a finite translation by a along x, is accompanied by an z1-dependent translation in ¢,
! ! !
Ty = T9 + a, zy =z, t' =t+ Bxia. (5.59)

When one transforms 5.48 to the primed coordinates associated with the center of the
circular motion of a geodesic, the z1-dependent time translation 5.59 eliminates the sin(28\)
term in the expression for ¢ as a function of the affine parameter in 5.48 . Thus, ¢ becomes
a good affine parameter precisely for the class of geodesics that circle around the origin at
fixed constant r.

So far, we were mainly concentrating on null geodesics emanating from the origin. The

analysis is easily extended to timelike geodesics, which turn out to exhibit a similar cyclic
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X5

Figure 5.4: The behavior of null geodesics emitted from an arbitrary point P in the Godel
universe, with the intial momentum in the (z1,z2) plane, and with several such geodesics
indicated. Each geodesic travels along a circular trajectory, reaches the velocity-of-light
surface and returns back to P, penetrating the preferred screen exactly twice during each
rotation cycle.

behavior. However, they only reach up to a certain critical distance rj; strictly smaller

than the distance rg of the velocity-of-light surface,
v =V1— M?r. (5.60)

In terms of the global comoving time coordinate ¢, the timelike geodesics sent from the
origin take longer to refocus at the origin than null geodesics, the refocusing time being
(1+ M?)x

AYM) =7

(5.61)

The geodesic expansion 6

We are now in a position to verify that the holographic screen is indeed located at

T = V/3/28 by a direct analysis of the geodesics in the Godel metric. Recall that according
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to Bousso’s prescription [143] , the screen is determined as the surface B where the geodesic
expansion # vanishes, leading to the “equation of motion” for the preferred holographic
screen,

=0, (5.62)
with § = h*” D&, defined as the contraction of the covariant derivative D, ¢, of the null
covector £, with respect to the induced metric h,, on B.

The null geodesics 5.48 define a congruence whose associated tangent vector is

) ) 0 o
£= (1—ﬂ2r2)§+5 <8751+6752> + V1= i (5.63)

Its covector dual (which we denote by the same letter £) has a rather simple form,

£ =€ dXH = —dt+ /1 — B?ridr. (5.64)

We can now evaluate the covariant derivative D,£, and contract it against the induced

metric h*, to obtain the geodesic expansion 8. After some straightforward algebra,

3 —4p%r?
g 34T (5.65)
/1 — 3212
Thus, 6 vanishes precisely at r = 74 = v/3/28, in accord with our anticipation in 5.36 .
Notice also that 8 diverges at the origin and at the velocity-of-light surface, confirming that

those are indeed caustics of the geodesic motion.

5.3.4 The Godel universe of M-theory

The lift of the five-dimensional Godel universe Gs to M-theory involves adding six flat
dimensions R%, which we parametrize by coordinates y,, a = 1,...6. Together, ¢,z; and y,
form a coordinate system X™ on R, with M = 0,...10. The action of eleven-dimensional
supergravity has the form

1 11 1 MNP
gnzﬁ/d X(R_@GMNPQG Q4. ), (5.66)
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where “...” stand for the Chern-Simons term plus fermionic terms. The eleven-dimensional

Godel solution is then given by

4 6
ds? = —(dt+fw)®+ ) dzf+ ) dyl, (5.67)

=1 a=1

Gijav = 2BJiKap, (5.68)

with all the other non-zero components of Gy npg related to 5.67 by permutations of
indices, and the Kihler form K on the R® factor defined by Kio = —Ko; = K3y = —Ky3 =
K56 = —Kgs = 1.

Consider again the congruence of all null geodesics emitted from the origin in space,
where our comoving observer is located. The longitudinal momenta K% along vy, are con-

served, leading to the following congruence of null geodesics:

r o= %\/ 1 — K?sin(BA) cos 9, (5.69)

ry = %\/ 1 — K2sin(BA) sin 9, (5.70)
1 1

t = 5(1 + K2\ + E(1 — K?)sin(26)) + to, (5.71)

¢ = Br+¢”, (5.72)

¢ = BA+ ¢y, (5.73)

y* = K%\ (5.74)

Just as in the case of four-dimensional Godel’s solution G3 X R discussed in the previous
section, one can use geodesics in the supersymmetric Gédel solution Gs x R® of M-theory
to define several different classes of preferred screens. First of all, there is a preferred screen
which is a direct product of R® and the screen that we found at » = ry in Gs. This
screen is translationally invariant along all the extra dimensions y,, and clearly satisfies
the 8 = 0 condition trivially. It is observer-dependent, and should be associated with an
observer localized at a point in G5 but otherwise delocalized along RS, or with the maximal

expansion of lightrays sent with zero momentum K from the origin in G5 and arbitrary y,.



5.3. HOLOGRAPHY IN SUPERSYMMETRIC GODEL UNIVERSES 125

In addition, observers localized in a point P both in G5 and in R® will naturally see a
compact screen in all directions. The precise location of this compact screen can be found
by considering the full congruence 5.69 of gedesics emitted from P. One can in principle
calculate the expansion parameter # and find the preferred compact screen as the surface of

maximal expansion. Using the affine parameter A and the total momentum K? = K,K*

Y

Figure 5.5: The two types of preferred screens in the M-theory Godel Gs x R®. The
translationally-invariant screen is located at 7y in G for all values of |y|, and can be
associated with an extended observer delocalized or wrapped along vy,. The screen associated
with a localized observer is compact in all space directions, and extends beyond ry, closer
to the velocity-of-light surface rg.

along RS as coordinates, the shape of the screen is determined from the # = 0 condition by

a rather complicated implicit function of A and K2,

0= % sin 1(BA) [(1 — K?)BA cos(BA) + K sin(B))] -

x [6K? +2(1 — K?)B?X + (—5K% + 4(1 — K?)82\?) cos(26)) (5.75)
+2(3 — K?)B sin(28))] .



5.4. ANALOGIES WITH HOLOGRAPHY IN DE SITTER SPACE 126

This screen is compact in all space dimensions, and exhibits SO(6) x SU(2) x U(1) rotation
invariance, with SO(6) acting on y, and SU(2) x U(1) on z;.

There are several interesting points about this compact screen. First of all, along y, =0
this screen extends in the r directions beyond the location 4 of the translationally invariant
screen. This is in fact intuitively clear: once we add the flat dimensions y,, the tendency
of the geodesics to expand in the y, dimensions competes against the refocusing behavior
of the geodesics in the r direction of G5, effectively slowing down the process of reaching
the surface of maximal area, which now happens for a slightly larger value of r. Notice also
that the entire compact screen still fits nicely within the velocity-of-light surface as defined
by our observer. Therefore, closed timelike curves are again shielded from the observer by

this screen.

5.4 Analogies with Holography in de Sitter Space

Holography in de Sitter space is difficult due to the absence of a solvable model or an
explicit embedding of de Sitter into string theory. As we have seen in the previous sections,
holography in the Gédel universes exhibits notable analogies with holography in de Sitter
space.

There are two important classes of preferred holographic screens in de Sitter [143] :
First, the future and past infinity are global, observer-independent screens of FKuclidean
signature. An attempt to formulate holography using these screens [135] has led to the
conjectured dS/CFT correspondence [136] . However, it is difficult to associate these global
screens with an observer inside de Sitter: Distinct points at future infinity in de Sitter
are outside of each other’s causal influence, and any operational definition of measurable
correlations seems to require a metaobserver.

The second class of screens is more suitable for the description of physics as seen by an
observer inside de Sitter [130, 131, 134]: The preferred screen of a given observer is located
at his or her cosmological horizon. Since the area of this observer-dependent screen is finite,

the strong version of the holographic principle implies a finite number of degrees of freedom
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in the quantum mechanics associated with that observer. The finiteness of the number of
degrees of freedom accessible to any given observer leads to various conceptual puzzles, such
as the recently discussed question of time recurrences [154]. Observers following different
trajectories have access to different holographic regions, perhaps suggesting a quantum
mechanical description of de Sitter space as a web of infinitely many Hilbert spaces (each
associated with an observer and grasping a finite number of degrees of freedom) with a
complicated system of maps between them (reflecting the exchange of data between causally
connected observers, and the horizon complementarity principle).

Given the conceptual complexity of de Sitter holography, it would be very helpful to
have an explicit simple solvable model exhibiting similar properties. We believe that the
supersymmetric Godel universes may provide such a model. Indeed, preferred screens ap-
pearing in Godel holography share many properties with the second type of preferred screens

in de Sitter space:

e Both represent an example of homogeneous geometries with screens that are only
defined when an observer has been selected. Observers following different worldlines

will see different holographic screens.

e The underlying spacetime geometry is homogeneous, but this homogeneity is broken
by the selection of the observer, and consequently by the location of the observer-
dependent holographic screen, implying that the screen breaks spontaneously some of
the symmetries of the naive vacuum. This picture of observer-dependent holography
stresses the importance of a local, environmentally-friendly definition of cosmological

observables.

e The finite proper area of the holographic screen implies a finite bound on the entropy
that flows through the compact holographic region of space associated with the ob-
server. In addition, the strong version of the holographic principle suggests that the
observer has only access to a finite number of degrees of freedom. Since the volume of

space accessible to the observer is effectively finite, the system has effectively been put
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in a finite box. Some of the conceptual difficulties with a possible stringy realization
of de Sitter space are connected to the fact that it is very difficult to confine strings

in a finite box.

There are also some qualitative differences between Godel and de Sitter holography worth

pointing out:

e In the Godel universe, the preferred screens are timelike, just as the canonical global
screen in AdS space. On the other hand, the observer-dependent preferred screens in

de Sitter space are null.

o The Godel universe is supersymmetric.

In order to decide whether holography in the Godel universe can be used as a supersymmet-
ric laboratory for exploring conceptual questions arising in de Sitter holography (or more
generally, holography in cosmological spacetimes), one needs a more microscopic under-

standing of the Godel universes in string and M-theory.

5.5 T-Duality of Godel Universes

One can compactify one of the flat directions R® (say ys) of the M-theory Gédel solution
on S' with constant radius R and obtain the following Type IIA Gédel background,

ds* = —(dt + Bw)’ + f:(dwif + f:(dya)% (5.76)
i=1 a=1
Hz'j5 = 26Jij, Z (577)
Fijay = 2BJijKap, (5.78)
where now in Type ITA theory a,b... = 1,...5. The dilaton is constant, implying that

the string coupling g; can be kept small everywhere, and the Godel solution is a solution
of weakly coupled Type IIA superstring theory. Now, we can T-dualize along various

dimensions.
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5.5.1 T-duality to a supersymmetric Type IIB pp-wave

The H-field of the Type ITA Godel solution 5.76 extends along ys5, the dimension that
was paired up in M-theory with the extra dimension yg. It turns our that T-duality along
this dimension is particularly interesting. We first rename y5 = z, and use the gauge in
which

B, = BJia’. (5.79)

Due to the absence of g, cross-terms in the metric, no B-field will be generated after

T-duality, and one gets

4 4
dstip = —dt’ — 28w (dt +dz) + Y _da} + Y dys + dz’. (5.80)

i=1 a=1
To see that this Type IIB solution is in fact a supersymmetric pp-wave, it will be convenient
to change the coordinates as follows. First, define lightcone coordinates u = t+z, v = t — z,
and also switch from the Cartesian coordinates x; to the “bipolar” coordinates given in 5.26

. Then, we perform a u-dependent rotation in each of the two preferred planes of rotation,

¢i = ¢i — Bu. (5.81)

Upon introducing new Cartesian coordinates Z;,

B +ids = e, (5.82)

B3 +ify = roet??, (5.83)

the Type IIB metric 5.80 T-dual to the Godel universe becomes
4 4 4
dstip = —dudv — 82D &})du® + Y di] + ) dys. (5.84)
i=1 i=1 a=1

This metric has the standard form of a supersymmetric pp-wave, with the Godel rotation
parameter 3 precisely equal to the conventionally normalized p parameter of the pp-wave.
One can also easily T-dualize the Ramond-Ramond fields: The self-dual Type IIB five-form

of the Type IIB solution is given by F5 ~ du A J A K, where J = Zf, =1 Jijdi; A diEj and
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K = Zi,b:l Kapdya N dyp. This Type IIB solution is in fact the supersymmetric pp-wave
resulting from the Penrose limit of the near-horizon AdSs x S® x T* geometry of a system

of intersecting D3-branes, and was first found in [155] .

5.5.2 Godel/pp-wave T-duality

We have shown that the Type ITA Godel universe is T-dual to a Type IIB pp-wave.
One can turn this observation around, and ask whether other known pp-waves can also be
T-dual to new Gddel-like universes. We indeed find a rich picture of Godel/pp-wave duality
which goes beyond the scope of the pp-wave T-dualities discussed in the literature (see, e.g.,
[156]).

Before generalizing the result of the previous subsection to a broader class of Gédel/pp-
wave pairs, it is instructive to first clarify which Killing dimension of the Type IIB pp-wave is
being compactified on S! and T-dualized to produce the Type IIA Gédel universe. Consider
first the Killing vector

0 0

b= 55 (5.85)

of the Type IIB pp-wave background. This vector is space-like at the origin, but becomes
time-like at some critical radial distance. One can remedy this problem by augmenting &

with a rotation in each of the two preferred planes

0 0 0 0

ou Ov 01 Od¢o
This Killing vector £ is everywhere spacelike, with the space-like rotation off-setting the
effect of the du? terms in the metric to keep this modified Killing vector spacelike. Moreover,

the norm of ¢ is
€)% = 1. (5.87)

Consequently, if we compactify the orbit of £ on a circle of fixed radius R and T-dualize,
the dilaton field of the resulting solution will stay constant. This T-duality is precisely the
inverse of the ITA — TIB T-duality that maps the Godel solution to the pp-wave. Note that
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closed timelike curves are introduced even though the orbifold action is generated by an
everywhere-spacelike Killing vector.

As was pointed out to us after the completion of this work, the T-duality relation
between the 5d Godel universe 5.76 and the geometry of 5.80 can also be obtained from a
T-duality relation found a week earlier by Herdeiro in [160] , by taking the limit of zero
charges P = Q = Qxxk = 0 in Eqn. (4.11) of [160]. © However, it was not realized in [160]
that the T-dual of the Gddel universe is a supersymmetric Hpp-wave; instead, this T-dual

was conjecturally interpreted in [160] as a rotating background.

5.5.3 New supersymmetric Godel universes in string and M-theory

These observations lead to a very simple and general prescription for constructing a
large class of Godel/pp-wave T-dual pairs. Start with any pp-wave in which an analog of
the Killing vector & of 5.86 (and satisfying 5.87 if we want constant gs) can be identified.
Compactification on S' along this Killing direction followed by T-duality produces a Gddel
like solution of the T-dual string theory.

As an example of this, we present a new supersymmetric Godel universe of Type ITA
theory, as the T-dual of the maximally supersymmetric Type IIB pp-wave [157] . Using
the obvious generalization of 5.86 that now involves four independent rotations in four
independent two-planes of the pp-vave, we obtain a Type ITA geometry with a constant Hj
and Fy. This Type IIA solution can be lifted to an M-theory solution of R!! topology. Its
metric factorizes to a product of a non-trivial metric on a Gy factor and the flat metric on
R?,

8 2

ds? = —(dt+pw)?+ Y (dz)? + D (dya)?, (5.88)
I=1 A=1

w = J[J.’,I}Id.’I?J, (589)

5We thank Harvey Reall for pointing this out to us.
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and the four-form strength can be written as

Gijkr = 4Beijr,  Gijap = —28JijKas, (5.90)
Gmnpg = —4B€mnpg Gmna = —28JmnKap, (5.91)
where i,... = 1,...,4 and m,... = 5,...,8, while the indices I,... =1,...,8 and A,B =

1,2; all the non-zero components of the Kihler forms J;; and K4p are now given by
Jig=—Jo1 = Jza = —Juz3 = Jsg = —Jes = Jrs = —Jgr =1 and K19 = —Ko = 1.

This new supersymmetric Godel solution Gy x R? of M-theory exhibits exactly the same
qualitative holographic features as the G5 x R® solution. In particular one finds compact
closed timelike curves that are topologically large, and the analysis of geodesics reveals the

same qualitative structure of holographic screens.

5.6 Geometry of the Godel Universes

In this section, we collect various aspects of the semi-Riemannian geometry of the
Godel universes G5 and Gy that play a central role in this chapter. We are using the +++

conventions of MTW [158] ; in particular, our metric is of the “mostly plus” signature.
5.6.1 The five-dimensional Go6del universe
In the original Cartesian coordinates ¢, z; it is natural to introduce a vielbein
e’ = dt + Bw, et =dz;, i=1,...4, (5.92)
so that the metric on G5 can be written simply as

gw = —€,°e,0 + ) e)le,. (5.93)

1

In this vielbein, the spin connection one-forms are

Qij = BJijdt + B2 Jij Tgexk dae, (5.94)
QiO = _QOi = ,BJU diEj. (595)



5.6. GEOMETRY OF THE GODEL UNIVERSES 133

These simple expressions for the spin connection can be used to easily extract the form of

the Ricci tensor in the Cartesian coordinates,
R, dX"dX" = 4B% dt* + 86° J;jz; dt dzj + 2% (6;5 — 268° Tx Jjexkwe) dzidzj.  (5.96)

The scalar curvature is constant,
R =452, (5.97)

as is indeed implied by the homogeneity of the solution. The Einstein tensor G, = R, —

%ngj has the pressureless fluid form,

G“deudXV = 65%dt* + 12,33Jij37i dz;dt + 6,34Jiijg£Ck.’Bg dz;dz; (5.98)
= GBQUMquX“dXV, (5.99)

with
udXt = —dt — BJijz; dx; (5.100)

the covariant dual of the timelike Killing vector 0/0t. This is matched by the energy-
momentum tensor of the constant gauge field strength F ~ J, which is also of the pressure-
less fluid form.

For the calculation of the geodesic expansion parameter  in the body of the chapter,

it is also useful to know the non-zero Christoffel symbols in the “bipolar” coordinates

(7"1, ¢17 T2¢2)a

P'[It‘lt = /32711” Pgllt = ﬁrlaa Pfllt = _:%, (5101)
1
t _ 3.3 r _ 2.2 o1 _ 2
Lyir =811, Ty, = —m1(1=28%r7),, Ty, = - — B%ry, (5.102)
t 3. .2 ™ @2, .2 P¢1_B2T§
F¢2r1 - ﬁ 1T, , P¢1¢2 = ,8 179, , dor1 _T, (5103)
Tt , = g2 2, = re2 _ P 5.104
rot — IB 2,5, dat — ﬁTQH rot — ’1"2’ ( . )
1
t _ 3.3 _ 2,.2 ¢2 2
Thurs = B8, Dby, = —ra(l=26%%),, T3, = = —frs,  (5.105)
t 3. .2 e _ 92,2 I‘@—BQT%
F¢1T2 - ﬁ rori,, P¢1¢2 - ;3 rir2;s, oira _?- (5106)
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5.6.2 The nine-dimensional Godel universe

This solution, discussed in Section 5, is T-dual to the maximally supersymmetric Type
IIB pp-wave. We again introduce the natural vielbein in which the metric is of the form
5.93,

e = dt + pw, el =dzy, i=1,...8. (5.107)

In this basis, the spin connection one-forms are given by

Qry = BJrsdt + 2 J1sJk Lok dor, (5.108)
Q1o = —Qo = BJ1sdzy, (5.109)

with the Ricci tensor

RyndXMdxN = 8p2dt? + 1683 Jrjxr dx g dt

(5.110)
+ (2,3251J + 8,34J1K:EKJJL.’BL) dxrdxy,
the scalar curvature

R = 8832, (5.111)

and the Einstein tensor

1

(Ryn — ERgMN)dXdeN = 123%dt? + 2483 Jrjxr dz g dt : )
5.112

—(26%617 — 1284 igak Jypr) dep da ;.

Notice that unlike in the case of the five-dimensional Gédel solution, the Einstein tensor of

the nine-dimensional Godel universe is no longer of the pressureless fluid form.

5.7 Discussion

Following a phenomenological approach to holography, we have identified preferred holo-
graphic screens as seen by inertial observers in a class of homogeneous universes of the Godel
type, with closed timelike curves. The structure of holographic screens change dramatically

the question of causality, by hiding all closed timelike curves or breaking them into causal
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pieces. It is tempting to suspect that holography serves as the chronology protection agency,
and in combination with a version of the complementarity principle can lead to a consistent
quantum mechanical description of this universe. We also noticed close analogies with the
structure of holographic screens in de Sitter space, which can make the Gédel universes an
interesting supersymmetric laboratory for exploring de Sitter holography. This phenomeno-
logical identification of natural screens does not tell us, however, whether the holographic
dual is given by some self-consistent quantum mechanics, or whether the pathology of closed
timelike curves is just translated into some inconsistency of the holographic dual. These
and similar questions require a microscopic understanding of holography in Godel universes
in string or M-theory. We have found evidence that the Godel-like cosmologies represent a
remarkable and highly solvable class of solutions of string theory, and are in fact T-dual to
solvable supersymmetric pp-wave solutions. Further investigation of microscopic aspects of

Godel universes and their holography in string and M-theory is in progress [145].
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